Modeling carbon emission performance under a new joint production technology with energy input

2020 ◽  
Vol 92 ◽  
pp. 104963
Author(s):  
F. Wu ◽  
P. Zhou ◽  
D.Q. Zhou
2021 ◽  
Vol 220 ◽  
pp. 14-21
Author(s):  
Zhao-Xian Su ◽  
Guo-Xing Zhang ◽  
Long Xu ◽  
Gong-Han Geng ◽  
Yi-Cun Wang ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 7234 ◽  
Author(s):  
Hui Peng ◽  
Yifan Wang ◽  
Yisha Hu ◽  
Hong Shen

Current emission reduction policies have struggled to adapt to the reality of industrial spatial agglomeration and increasing industrial linkages. In response, this paper incorporates new economic geography factors such as agglomeration production and industrial (trade) association into the analysis framework of carbon emission performance factors through China’s provincial panel data and conducts empirical research. It has been found that large-scale industrial production under economic agglomeration is conducive to improving carbon emission performance and that different forms of agglomeration at different degrees of agglomeration correspond to different carbon emission performances. As the degree of agglomeration increases, the effect of reducing emissions by specialized agglomeration decreases while the effect of reducing emissions by diversified agglomeration increases. Specialized agglomeration externalities and diversified agglomeration externalities can coexist at the same time, depending on the appropriate degree of agglomeration. There is a strong negative environmental efficiency effect in the provinces with close commodity trade links, which has triggered environmental dumping and pollution transfer between provinces. In the work of energy conservation and emission reduction, we must attach great importance to the hidden carbon in domestic merchandise trade and the resulting intergovernmental environmental game, and furthermore, give full play to the “self-purification” effect of aggregate production on energy conservation and emission reduction.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Longfei He ◽  
Zhaoguang Xu ◽  
Zhanwen Niu

We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP)” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.


Sign in / Sign up

Export Citation Format

Share Document