A new model to evaluate solar spectrum impacts on the short circuit current of solar photovoltaic modules

Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 29-37 ◽  
Author(s):  
Jinqing Peng ◽  
Lin Lu ◽  
Meng Wang
2017 ◽  
Vol 17 (10) ◽  
pp. 1341-1346 ◽  
Author(s):  
Yuhei Horio ◽  
Md. Mijanur Rahman ◽  
Yurei Imai ◽  
Yoshihiro Hishikawa ◽  
Takashi Minemoto

Solar Energy ◽  
2017 ◽  
Vol 155 ◽  
pp. 1300-1305 ◽  
Author(s):  
Hiroyuki Mano ◽  
Md. Mijanur Rahman ◽  
Aika Kamei ◽  
Takashi Minemoto

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangho Kim ◽  
Thanh Thuy Trinh ◽  
Jinjoo Park ◽  
Duy Phong Pham ◽  
Sunhwa Lee ◽  
...  

AbstractWe developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley–Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.


Clean Energy ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 222-226
Author(s):  
Gang Sun ◽  
Xiaohe Tu ◽  
Rui Wang

Abstract In order to accurately select photovoltaic modules under different climatic conditions, three kinds of polycrystalline silicon photovoltaic modules were prepared for this study using different properties of packaging materials and two typical climatic zones of China were selected for installation and operation of these photovoltaic (PV) modules. The photoelectric parameters (maximum power, open-circuit voltage, short-circuit current, etc.) and electroluminescence images of these modules were analysed before and after their operation for 6 months. The study found that the performance of PV modules in different climatic regions shows different decay tendency and degradation mechanism. There was a significant difference in the degradation of the three different types of PV modules in the sub-humid-hot region (Suzhou, Jiangsu); two kinds of photovoltaic modules using relatively poorly performing package materials showed significant potential-induced degradation effects. However, the degradation trend of the three different types of PV modules in the warm-temperate region (Kenli, Shandong) was consistent and no significant potential-induced degradation effect was observed.


2014 ◽  
Vol 1049-1050 ◽  
pp. 678-681
Author(s):  
Mian Liao ◽  
Ling Yun Kong ◽  
Hong Liang Ding

This paper designed an analog control circuit which can automatically track the sun for PV bracket system to improve the solar cell photo-electricity conversion efficiency. The sunlight intensity can be real-time detected by sampling the short-circuit current of solar cell. The PV bracket system can be automatically adjusted to achieve a final horizontal angle and pitch angle by using the hysteresis comparator and dedicated motor driver chip, which always makes photovoltaic modules toward the sun's position. At the same time, the PV bracket system can be automatically reset by the hall switch when the sun reaches the sunset and the light intensity is less than the reference value. The experimental prototype is used to testify the correctness and reliability of the control system, which has better practicability and value to extend.


2010 ◽  
Vol 74 ◽  
pp. 231-236 ◽  
Author(s):  
Vladimir M. Lantratov ◽  
Sergey A. Mintairov ◽  
Sergey A. Blokhin ◽  
Nikolay A. Kalyuzhnyy ◽  
Nikolay N. Ledentsov ◽  
...  

We studied the different carrier kinetic mechanisms involved into the interband absorption of quantum dots (QDs) by photocurrent spectroscopy. It was shown that in vertically coupled InGaAs QDs an effective carrier emission, collection and separation take place due to minizone formation. The possibility for the incorporation of vertically-coupled QDs into solar cells (SC) without any deterioration of structural quality of the p-i-n-junction has been shown. Due to the additional absorption of solar spectrum in QD media and the subsequent effective separation of photogenerated carriers, an increase (~1%) in short-circuit current density (Jsc) for the QD SC-devices has been demonstrated. However the insertion of QDs into intrinsic region reduced the open circuit voltage (Voc) of such devices. Moving the QD array in the base layer as well as including the Bragg reflector (BR) centered on 920 nm resulted in increase of the Voc. Moreover an improved absorption in the QD media for SC with BR led to further increase of Jsc (~1%). The efficiency for QD SCs at the level of 25% (30 suns AM1.5D) has been demonstrated.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2336 ◽  
Author(s):  
Sirona Valdueza-Felip ◽  
Rodrigo Blasco ◽  
Javier Olea ◽  
Alba Díaz-Lobo ◽  
Alejandro F. Braña ◽  
...  

We investigate the photovoltaic performance of solar cells based on n-AlxIn1−xN (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The AlxIn1−xN layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This increase of Al content results in more resistive layers (≈10−4–1 Ω·cm) while the residual carrier concentration drops from ~1021 to ~1019 cm−3. As a result, the top n-contact resistance varies from ≈10−1 to 1 MΩ for InN to Al0.56In0.44N-based devices, respectively. Best results are obtained for devices with 28% Al that exhibit a broad external quantum efficiency covering the full solar spectrum with a maximum of 80% at 750 nm, an open-circuit voltage of 0.39 V, a short-circuit current density of 17.1 mA/cm2 and a conversion efficiency of 2.12% under air mass 1.5 global (AM1.5G) illumination (1 sun), rendering them promising for novel low-cost III-nitride on Si photovoltaic devices. For Al contents above 28%, the electrical performance of the structures lessens due to the high top-contact resistivity.


Sign in / Sign up

Export Citation Format

Share Document