Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires

Energy ◽  
2021 ◽  
pp. 121820
Author(s):  
Shoaib Raza Khan ◽  
Muhammad Zeeshan
2018 ◽  
Vol 775 ◽  
pp. 383-389
Author(s):  
Dominique Jan Bacalso Tan ◽  
Bryan B. Pajarito

An adsorbent for post-combustion carbon dioxide capture was prepared using low-cost and sustainable natural zeolite coated with chitosan. An optimum adsorbent was identified from 3 levels of particle size of natural zeolite and 10 levels of chitosan loading. The optimum adsorbent was characterized using infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis and differential scanning calorimetry. The chemical and thermal properties of the adsorbent indicated successful coating of chitosan on natural zeolite. The adsorbent registered competitive dynamic adsorption capacity of 0.81 mmol g-1 with good retention, at least, up to 5 adsorption-desorption cycles.


2021 ◽  

<p>In this paper, the low-cost and practical adsorption for removing methylene blue (MB) dye has been developed by using recoverable natural zeolite that was magnetized with Fe3O4. The magnetization was conducted by co-precipitation technique. The adsorbents obtained from the magnetization were characterized by XRD, FTIR, surface area analyzer and turbidity meter machines. The MB adsorption on the recoverable adsorbent was performed by batch experiment. The effect of Fe3O4 fraction on adsorbent characters, recoverability, and adsorption ability was evaluated. The adsorption kinetic and isotherm were also determined. The research results attributed that recoverable zeolite/Fe3O4 adsorbent has been successfully produced. It was found that the increase of Fe3O4 fraction in the adsorbent, has improved the recoverability, but in the same time, it caused the adsorption decreased. The fraction of Fe3O4 as much 33.30%w displayed compromisingly good capacity and recoverability. The maximum MB dye adsorption was reached by a condition of 0.25 g L-1 of the adsorbent dose, pH 8, and in 60 mins of the contact time The adsorption kinetic well fitted with pseudo second-order with the adsorption rate of 0.0238 mg g-1 min-1. The adsorption strongly agreed with the Langmuir isotherm with adsorption capacity of 32.258 mg g-1 .</p>


2017 ◽  
Vol 76 (4) ◽  
pp. 895-908 ◽  
Author(s):  
Yaser Rasouli ◽  
Mohsen Abbasi ◽  
Seyed Abdollatif Hashemifard

In this research, four types of low cost and high performance ceramic microfiltration (MF) membranes have been employed in an in-line adsorption–MF process for oily wastewater treatment. Mullite, mullite-alumina, mullite-alumina-zeolite and mullite-zeolite membranes were fabricated as ceramic MF membranes by low cost kaolin clay, natural zeolite and α-alumina powder. Powdered activated carbon (PAC) and natural zeolite powder in concentrations of 100–800 mg L−1 were used as adsorbent agent in the in-line adsorption–MF process. Performance of the hybrid adsorption–MF process for each concentration of PAC and natural zeolite powder was investigated by comparing quantity of permeation flux (PF) and total organic carbon (TOC) rejection during oily wastewater treatment. Results showed that by application of 400 mg L−1 PAC in the adsorption–MF process with mullite and mullite-alumina membranes, TOC rejection was enhanced up to 99.5% in comparison to the MF only process. An increasing trend was observed in PF by application of 100–800 mg L−1 PAC. Also, results demonstrated that the adsorption–MF process with natural zeolite powder has higher performance in comparison to the MF process for all membranes except mullite-alumina membranes in terms of PF. In fact, significant enhancement of PF and TOC rejection up to 99.9% were achieved by employing natural zeolite powder in the in-line adsorption–MF hybrid process.


2015 ◽  
Vol 5 (4) ◽  
pp. 542-549 ◽  
Author(s):  
Waid S. Omar

The potential of natural zeolite as a low-cost adsorbent was investigated for the removal of zinc from aqueous solution using a continuous fixed bed column. The zeolite tested was taken from the same source (Jabal Uniza in south Jordan) and subjected to crushing and sieving only, without any treatment. The two samples tested are UNZ1 (0.42–0.841 mm) and UNZ2 (0.21–0.42 mm). The Thomas model analysis of the measured breakthrough curves revealed that the adsorbent UNZ2 has a higher value of adsorption capacity to zinc ions (50.75 mg/g) than UNZ1 (33.68 mg/g). The time to 50% breakthrough was determined by the Yoon and Nelson model. It has been found that the time needed to reach 50% breakthrough is 2,006 minutes and 3,171 minutes for UNZ1 and UNZ2, respectively. This indicated that UNZ2 provides better performance with larger service time. Both UNZ1 and UNZ2 agreed to a high degree with the Thomas and Yoon and Nelson models.


1997 ◽  
Vol 22 (0) ◽  
pp. 15-22
Author(s):  
Marlene SEIJÓ ECHEVARRÍA ◽  
Ruben DEL TÓRO DÉNIZ ◽  
Eugenio MARTINEZ CASTELLANOS ◽  
Gerard A SHERBAKOV ◽  
Juan Jose RODRIGUEZ MOYA

In this paper, we carry out a study on the process of sorption of lead in polluted waters usingnatural zeolites, with the objective of analyzing their behavior in the purification of water.Experiments are carried out under static and dynamic conditions to determine the influence of other metal ions, such as: Ca (II), Mg (II), K (I) and Na (I), on this process. We demonstrate that the affinity of Pb (II) with regard to zeolite is higher than that of the ions mentioned above. It allows us to use this material in the capture of lead in residual waters. A lineal model of regression was obtained using a computer program called Eureka which relates the capacity of interchange of zeolite with respect to the concentration of the metal ions present in waters. We also studied the selectivity of zeolite in the process of sorption of Pb (II) compared with other heavy metals like Zn (II) and Cd (II).The results achieved in both cases increase the expectancy about the usage of zeolite as a low cost material for purifing waters.


Author(s):  
Thaísa Frossard Coslop ◽  
Ramiro Picoli Nippes ◽  
Rosangela Bergamasco ◽  
Mara Heloisa Neves Olsen Scaliante

Sign in / Sign up

Export Citation Format

Share Document