Forecasting nuclear energy consumption in China and America: an optimized structure-adaptative grey model

Energy ◽  
2021 ◽  
pp. 121928
Author(s):  
Song Ding ◽  
Zui Tao ◽  
Huahan Zhang ◽  
Yao Li
Energy ◽  
2018 ◽  
Vol 165 ◽  
pp. 223-234 ◽  
Author(s):  
Wenqing Wu ◽  
Xin Ma ◽  
Bo Zeng ◽  
Yong Wang ◽  
Wei Cai

2020 ◽  
Vol 2 (3) ◽  
pp. 153-158
Author(s):  
E. V. YANUSIK ◽  

The article discusses the main prerequisites for the development of nuclear energy in the global econo-my, also defines nuclear energy and discusses the structure of global energy consumption. The article proves that the crucial prerequisite for the development of nuclear energy in the world market is the economic efficiency of nuclear power plants.


2020 ◽  
pp. 0958305X2094998
Author(s):  
Chun Chih Chen

Taiwan intends to be nuclear free by 2025. This study employs the Lotka–Volterra competition model for sustainable development to analyze the emissions–energy–economy (3Es) issue to make appropriate policy suggestions for a nuclear-free transition. It also offers a new approach to naming the 3E relationship. The literature review shows that the environmental Kuznets curve accompanies the feedback and conservation hypotheses. In the 3E dynamics relationship analysis, the model shows a good mean absolute percentage error (<15%) for the model estimation. The key findings are as follows: 1) the fossil fuel-led economy exists; 2) CO2 emissions are reduced with nuclear energy consumption; 3) renewable energy is far from scale; 4) a complementary effect exists between fossil fuel and nuclear energy consumption; and 5) gas retrofitting and phasing out of nuclear seem imminent. In the energy transition, Taiwan drastically cuts nuclear energy without considering energy diversity due to which troubles might ensue. The priority issue for Taiwan’s energy mix is energy security. To deal with these concerns, this study suggests the government could improve energy efficiency, build a smart grid, develop carbon capture and storage, and reconsider putting nuclear energy back into the energy mix before renewable energy is scaled.


2012 ◽  
Vol 93 ◽  
pp. 432-443 ◽  
Author(s):  
Ling Tang ◽  
Lean Yu ◽  
Shuai Wang ◽  
Jianping Li ◽  
Shouyang Wang

2019 ◽  
Vol 10 (4) ◽  
pp. 627-647 ◽  
Author(s):  
Izabela Jonek-Kowalska

Research background: Energy policy is closely linked to economic development. Therefore, its optimization is an important issue especially in the contemporary European environmental conditions.  EU regulations enforce a reduction of carbon dioxide emissions and the abandonment of non-renewable energy resources. Instead, they promote renewable energy sources. In this way, new legal and environmental circumstances are becoming the main reason for the transformation of energy balances, which is a real economic and technological challenge. This transformation requires a strategic and effective approach, especially in those countries which until now have used mainly hard coal in the energy sector. Purpose of the article: According to above justification, the main purpose of the article is to identify the strategies for the transformation of energy balances that were implemented in the years 1990–2017 by chosen European countries and Turkey. Methods: The study period covers the years 1990–2017, and the subject of the research at first applies to all European countries, and then to 7 countries selected due to their high share of bituminous coal in energy balance in the first year of the analysis, treated as the initial point of transformation (1990). As a result of this selection, 6 EU members and Turkey with the largest share of coal in energy production in the year 1990 are examined. Particularly, an analysis of the trends in their energy balances in the years 1990–2017 is conducted. The research uses data on non-renewable energy consumption and renewable energy resources and the total energy consumption. The research methodology includes: analysis of the structure and dynamics, evaluation of trends and comparative analysis and presentation of development strategies. At the end of the article, a comparative analysis is carried out, the economic consequences of identified changes are assessed, and recommendations are formulated aimed at optimizing the structure of the energy balance in the future. Findings & Value added: Generally, there are four theoretical and empirical patterns of transformation strategies of energy balances with dominant coal consumption: 1) using other non-renewable energy resources; 2) replacing non-renewable energy resources with renewable ones; 3) using nuclear energy instead of coal; 4) increasing coal consumption as available and efficient energy resource. It was found that the examined countries implement mainly the strategy in which the decreasing share of coal is made up for by an increasing share of gas. Additionally, we can observe an increase in the share of nuclear energy in France, the Czech Republic and the United Kingdom. In Spain and Germany, despite the use of nuclear power plants for the production of energy, the share of nuclear energy in the energy balances has systematically decreased in time. In all analyzed countries, we can also observe an increasing share of renewable sources in energy balances, however, this growth is very slow.


2019 ◽  
Vol 11 (21) ◽  
pp. 5921 ◽  
Author(s):  
Peng Zhang ◽  
Xin Ma ◽  
Kun She

Energy consumption is an essential basis for formulating energy policy and programming, especially in the transition of energy consumption structure in a country. Correct prediction of energy consumption can provide effective reference data for decision-makers and planners to achieve sustainable energy development. Grey prediction method is one of the most effective approaches to handle the problem with a small amount of historical data. However, there is still room to improve the prediction performance and enlarge the application fields of the traditional grey model. Nonlinear grey action quantity can effectively improve the performance of the grey prediction model. Therefore, this paper proposes a novel incomplete gamma grey model (IGGM) with a nonlinear grey input over time. The grey input of the IGGM model is a revised incomplete gamma function of time in which the nonlinear coefficient determines the performance of the IGGM model. The WOA algorithm is employed to seek for the optimal incomplete coefficient of the IGGM model. Then, the validations of IGGM are performed on four real-world datasets, and the results exhibit that the IGGM model has more advantages than the other state-of-the-art grey models. Finally, the IGGM model is applied to forecast Japan’s solar energy consumption in the next three years.


Sign in / Sign up

Export Citation Format

Share Document