Unsteady Model for Wellbore Pressure Transmission of Carbon Dioxide Fracturing Considering Limited-flow Outlet

Energy ◽  
2021 ◽  
pp. 122289
Author(s):  
Caiyun Xiao ◽  
Hongjian Ni ◽  
Xian Shi
2017 ◽  
Vol 21 ◽  
pp. 467-472 ◽  
Author(s):  
Weiqiang Song ◽  
Hongjian Ni ◽  
Ruihe Wang ◽  
Baojiang Sun ◽  
Zhonghou Shen

2017 ◽  
Vol 63 (3) ◽  
pp. 139-148 ◽  
Author(s):  
S. Stanisławek ◽  
P. Kędzierski ◽  
D. Miedzińska

Abstract Hydraulic fracturing of rocks boosts the production rate by increasing the fracture-face surface area through the use of a pressurized liquid. Complex stress distribution and magnitude are the main factors that hinder the use of information gathered from in situ hydraulic fracturing in other locations. Laboratory tests are a good method for precisely determining the characteristics of these processes. One of the most important parameters is breakdown pressure, defined as the wellbore pressure necessary to induce a hydraulic fracture. Therefore, the main purpose of this investigation is to verify fracture resistance of rock samples fractured with the assistance of the most popular industry fluids. The experiments were carried out using a stand designed specifically for laboratory hydraulic fracturing. Repeatable results with a relative error within the range of 6-11% prove that the experimental methodology was correct. Moreover, the obtained results show that fracturing pressure depends significantly on fluid type. In the case of a water test, the fracturing pressure was 7.1±0.4MPa. A similar result was achieved for slickwater, 7.5±0.7MPa; however, a much lower value (4.7±0.5MPa) was registered in the case of carbon dioxide.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 919-936 ◽  
Author(s):  
Cíntia G. Machado ◽  
Mohammadreza M. Firoozabad ◽  
Albert C. Reynolds

Summary We provide analytical solutions for the wellbore pressure during an injection/falloff-test problem under radial-flow conditions in homogeneous porous media where the injected fluid is carbonated water. For both the injection and falloff periods, we assume an isothermal process with thermodynamic equilibrium, a linear adsorption isotherm, and viscosities that depend only on the carbon dioxide (CO2) concentration. We also neglect CO2 diffusion, gravity effects, and capillarity effects. For the injection period, we first determine the saturation and concentration distributions with time in the reservoir by applying the method of characteristics to solve the appropriate system of hyperbolic conservation equations, where we assume incompressible fluids. In solving for water saturation and CO2 concentration in water, we neglect the change in water volume caused by the variation of the CO2 concentration in water. After solving for the saturation and concentration profiles, the pressure solution can be obtained by integrating Darcy's law, from the wellbore radius to infinity, while assuming an infinite-acting reservoir and invoking the Thompson-Reynolds steady-state theory (Thompson and Reynolds 1997b). Because Darcy's law does not assume incompressible flow, the pressure solution generated does not assume incompressible flow. To obtain an analytical expression for the wellbore pressure, however, we do assume that for injection and falloff, the total flow-rate profile in the reservoir is constant in a region from the wellbore to a radius greater than the radius of the flood front. The region within this radius increases with time and it is referred to as the steady-state region or zone (Thompson and Reynolds 1997b). During the falloff stage, it is assumed that there is no change in saturation in the reservoir, which is reasonable because we neglect capillary pressure, the gravity force, and fluid compressibilities when determining the saturation profile. Using these assumptions, we generate analytical solutions for a carbonated-water-injection (CWI)/falloff test and compare these solutions with those obtained with a commercial reservoir simulator using very fine spatial grids and very small timesteps. This comparison suggests that the analytical solutions presented can be used reliably to analyze pressure data obtained during CWI/falloff tests.


Author(s):  
K. C. Tsou ◽  
J. Morris ◽  
P. Shawaluk ◽  
B. Stuck ◽  
E. Beatrice

While much is known regarding the effect of lasers on the retina, little study has been done on the effect of lasers on cornea, because of the limitation of the size of the material. Using a combination of electron microscope and several newly developed cytochemical methods, the effect of laser can now be studied on eye for the purpose of correlating functional and morphological damage. The present paper illustrates such study with CO2 laser on Rhesus monkey.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


2001 ◽  
Vol 7 (7) ◽  
pp. 789-796 ◽  
Author(s):  
L. H. Ziska ◽  
O. Ghannoum ◽  
J. T. Baker ◽  
J. Conroy ◽  
J. A. Bunce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document