A novel triangular boundary crack front element for 3D crack problems based on 8-node serendipity element

2019 ◽  
Vol 105 ◽  
pp. 296-302 ◽  
Author(s):  
Guizhong Xie ◽  
Fenglin Zhou ◽  
Dehai Zhang ◽  
Xiaoyu Wen ◽  
Hao Li
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Guizhong Xie ◽  
Fenglin Zhou

This paper focuses on tackling the two drawbacks of the dual boundary element method (DBEM) when solving crack problems with a discontinuous triangular element: low accuracy of the calculation of integrals with singularity and crack front element must be utilized to model the square-root property of displacement. In order to calculate the integrals with higher order singularity, the triangular elements are segmented into several subregions which consist of subtriangles and subpolygons. The singular integrals in those subtriangles are handled by the singularity subtraction technique in the integration space and can be regularized and accurately calculated. For the nearly singular integrals in those subpolygons, the element subdivision technique is employed to improve the calculation accuracy. In addition, considering the location of the crack front in the element, special crack front elements are constructed based on a 6-node discontinuous triangular element, in which the displacement extrapolation method is introduced to obtain the stress intensity factors (SIFs) without consideration of orthogonalization of the crack front mesh. Several numerical results are investigated to fully verify the validation of the presented approach.


1981 ◽  
Vol 103 (3) ◽  
pp. 214-218 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

A three-dimensional, elastic-plastic finite element program is developed and applied to analyze the stress field in a plate containing a through crack. The center cracked plate is subjected to uniform tensile loading which results in mode I opening of the crack surfaces. Transverse variations of the opening tensile stress component and of the effective stress (von Mises) in the vicinity of the crack front are presented. They clearly demonstrate the three-dimensional nature of this problem with distributions that depend on specimen thickness. For thinner plates, the plastic deformation concentrates near the plate surfaces while the normal stress is largest in the plate interior. In thicker plates the deformation and normal stress fields are more uniform in the plate interior near the crack front, but they develop a rapid boundary layer-type variation in the vicinity of the plate surfaces.


2008 ◽  
Vol 76 (1) ◽  
Author(s):  
Sarveshwar C. Wadgaonkar ◽  
Venkitanarayanan Parameswaran

The existing studies on the behavior of cracks in continuously graded materials assume the elastic properties to vary in the plane of the crack. In the case of a plate graded along the thickness and having a crack in its plane, the elastic properties will vary along the crack front. The present study aims at investigating the effect of elastic gradients along the crack front on the structure of the near-tip stress fields in such transversely graded materials. The first four terms in the expansion of the stress field are obtained by the eigenfunction expansion approach (Hartranft and Sih, 1969, “The Use of Eigen Function Expansion in the General Solution of Three Dimensional Crack Problems,” J. Math. Mech., 19(2), pp. 123–138) assuming an exponential variation of the elastic modulus. The results of this part of the study indicated that for an opening mode crack, the angular structure of the first three terms in the stress field expansion corresponding to r(−1∕2), r0, and r1∕2 are identical to that given by Williams’s solution for homogeneous material (Williams, 1957, “On the Stress Distribution at the Base of a Stationary Crack,” ASME J. Appl. Mech., 24, pp. 109–114). Transversely graded plates having exponential gradation of elastic modulus were prepared, and the stress intensity factor (SIF) on the compliant and stiffer face of the material was determined using strain gauges for an edge crack subjected to pure bending. The experimental results indicated that the SIF can vary as much as two times across the thickness for the gradation and loading considered in this study.


1993 ◽  
Vol 60 (1) ◽  
pp. 175-182 ◽  
Author(s):  
A. F. Bower ◽  
M. Ortiz

The residual stress distribution in a brittle polycrystalline solid may have a significant influence on its toughness. Grains in a state of residual compression are less likely to be fractured by a growing crack and may trap the crack front or be left behind as bridging particles (Evans et al., 1977). This paper estimates the toughness enhancement due to intergranular residual stresses, using a three-dimensional model. The residual stress is approximated as a doubly sinusoidal distribution acting perpendicular to the plane of an initially straight semi-infinite crack. An incremental perturbation method developed by Bower and Ortiz (1990) for solving three-dimensional crack problems is extended here to cracks loaded by nonuniform remote stresses. It is used to calculate the shape of the semi-infinite crack as it propagates through the doubly sinusoidal residual stress. It is shown that the local regions of compression may trap the crack front and give rise to some transient toughening. In addition, if the residual stress exceeds a critical magnitude, pinning particles may be left in the crack wake. However, for practical values of residual stress and grain size, the predicted toughness enhancement is insignificant. Furthermore, the analysis cannot account for the large bridging zones observed in experiments. It is concluded that the R-curve behavior and bridging particles observed in monolithic ceramics are caused by mechanisms other than residual stresses acting perpendicular to the crack plane.


1985 ◽  
Vol 52 (3) ◽  
pp. 571-579 ◽  
Author(s):  
J. R. Rice

The problem explained in the title is formulated generally and given an explicit solution for tensile loadings opening a half-plane crack in an infinite body. For the half-plane crack, changes in the opening displacement between the crack surfaces and in the stress-intensity factor distribution along the crack front are calculated to first order in an arbitrary deviation of the crack-front position from a reference straight line. The deviations considered lie in the original crack plane. The results suggest that in the presence of loadings that would induce uniform conditions along the crack front, if it were straignt, small initial deviations from straightness should reduce in size during quasistatic crack growth if of small enough spatial wavelength but possibly enlarge in size if of longer wavelength. The solution methods rely on elastic reciprocity, in terms of a three-dimensional version of weight function theory for tensile cracks, and on direct solution of elastic crack problems. The weight function is derived for the half-plane crack by solving for the first-order variation in the elastic displacement field associated with arbitrary variations of the crack front from a straight reference line. Also, a new three-dimensional weight function theory is developed for planar cracks under general mixed-mode loading involving tension and shears relative to the crack, the connection between weight functions and the Green’s function for crack problems is shown, and some results are given for the half-plane crack on the variations of elastic fields for variation of crack-front location in the presence of general loadings including shear.


2017 ◽  
Vol 754 ◽  
pp. 161-164
Author(s):  
Yohei Sonobe ◽  
Takuichiro Ino ◽  
Akihide Saimoto ◽  
Md. Abdul Hasib ◽  
Atsuhiro Koyama ◽  
...  

In a standard body force method analysis, a mesh division is required to define the boundary of a problem and to solve a governing equation using discretization procedure. However, in the present study, a moving least square strategy is introduced to define a weight function for the density of body force doublet and therefore a crack analysis is carried out without providing a standard mesh-division. Hence, the standard crack face elements are not required at all. A variety of 3D crack problems can be analyzed simply by providing a data that only de nes a crack front. Besides the nodal points for crack front, several internal nodes are generated on the crack face to represent a distribution of unknown function. At the internal nodes, an unknown variable is assigned which uniquely de ne a distribution of the relative crack face displacement. In the present approach, a crack problem is formulated as a singular integral equation whose unknown is a value of the weight function at the internal nodal points. A crack growth can be simulated directly by changing the shape of crack front, by means of adding a new nodal point in the vicinity of the current crack front. In the present paper, the proposed method is used to simulate a coalescence of interacting planar cracks.


1980 ◽  
Vol 102 (4) ◽  
pp. 347-352 ◽  
Author(s):  
P. D. Hilton ◽  
B. V. Kiefer

An improved procedure for enriching three-dimensional isoparametric elements with the asymptotic crack front solution is described. Results from finite element calculations, involving these enriched elements, for the three-dimensional problems of a straight crack in plane strain and an axisymmetric penny-shaped crack which demonstrate the high degree of accuracy attainable are presented. Some finite-element solutions for through-crack and surface flaw problems are then reported showing the influence of a free surface on the variation of the stress intensity along the crack edge. Special treatments of the crack front-free surface stress intensity are implemented and the results discussed.


Sign in / Sign up

Export Citation Format

Share Document