crack edge
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 961 (1) ◽  
pp. 012014
Author(s):  
Z A Alkaissi

Abstract A research aim was to achieve a finite element model for predictive pavement cracking implementing ABAQUS software ver.6.12.1. A simulation model for pavement structure was implemented to analyze the propagation of cracks within flexible pavement. The X-FEM method adopted in this research based on the functions of interpolation that can characterize the displacements near the crack zone, initial crack was defined at the bottom of asphalt layer. The estimated results illustrated that X-FEM was efficient for the simulation of cracks in pavement structures without the need for re meshing during crack propagation evolution process. Finally, inclusive simulation results probed the considerable effect for improvement of bonding layers to enhance the service life of pavement in terms of decreasing the rate of crack propagation. The crack was propagated upwards from depth end of asphalt layer to pavement surface and deviated from center of applied pressure with an inclination of almost 300 in the third upper zone of asphalt layer while the pre-crack point was always located in the bottom of asphalt layer in pavement model because of the different characteristics of their bonding bases. In the crack zone the permanent deformation was increased gradually from the crack edge along vertical direction of crack spread due to tensile stresses concentration at the crack zone. The action of horizontal and vertical stresses affect crack propagation and growth vertically to the direction of higher horizontal tensile stresses, and along direction of higher compression vertical stresses.


2021 ◽  
Vol 56 (6) ◽  
pp. 902-910
Author(s):  
V. V. Vasil’ev ◽  
S. A. Lurie ◽  
V. A. Salov

Abstract— A classical plane problem of the theory of elasticity about a crack in a stretched orthotropic elastic unbounded plane is considered, which leads to a singular solution for stresses in the vicinity of the crack edge. The relations of the generalized theory of elasticity, including a small scale parameter, are given. The equations of the generalized theory are of a higher order than the equations of the classical theory and allow eliminating the singularity of the classical solution. The scale parameter is determined experimentally. The results obtained determine the effect of the crack length on the bearing capacity of the plate and are compared with the experimental results for plates made of fiberglass and carbon fiber reinforced plastic.


2021 ◽  
Vol 13 (2) ◽  
pp. 240
Author(s):  
Yang Yu ◽  
Maria Rashidi ◽  
Bijan Samali ◽  
Amir M. Yousefi ◽  
Weiqiang Wang

Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis of multiple image features, this work presents a novel approach for crack identification of concrete structures. Firstly, the non-local means method is adopted to process the original image, which can effectively diminish the noise influence. Then, to extract the effective features sensitive to the crack, different filters are employed for crack edge detection, which are subsequently tackled by integral projection and principal component analysis (PCA) for optimal feature selection. Moreover, support vector machine (SVM) is used to design the classifiers for initial diagnosis of concrete surface based on extracted features. To raise the classification accuracy, enhanced salp swarm algorithm (ESSA) is applied to the SVM for meta-parameter optimization. The Dempster–Shafer (D–S) fusion algorithm is utilized to fuse the diagnostic results corresponding to different filters for decision making. Finally, to demonstrate the effectiveness of the proposed framework, a total of 1200 images are collected from a real concrete bridge including intact (without crack), longitudinal crack, transverse crack and oblique crack cases. The results validate the performance of proposed method with promising results of diagnosis accuracy as high as 96.25%.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 621-629
Author(s):  
Yingsong Zhao ◽  
Cherdpong Jomdecha ◽  
Shejuan Xie ◽  
Zhenmao Chen ◽  
Pan Qi ◽  
...  

In this paper, the conventional database type fast forward solver for efficient simulation of eddy current testing (ECT) signals is upgraded by using an advanced multi-media finite element (MME) at the crack edge for treating inversion of complex shaped crack. Because the analysis domain is limited at the crack region, the fast forward solver can significantly improve the numerical accuracy and efficiency once the coefficient matrices of the MME can be properly calculated. Instead of the Gauss point classification, a new scheme to calculate the coefficient matrix of the MME is proposed and implemented to upgrade the ECT fast forward solver. To verify its efficiency and the feasibility for reconstruction of complex shaped crack, several cracks were reconstructed through inverse analysis using the new MME scheme. The numerical results proved that the upgraded fast forward solver can give better accuracy for simulating ECT signals, and consequently gives better crack profile reconstruction.


Author(s):  
Xiaoliang Zhou ◽  
Lamei Xu ◽  
Jing Wang

Author(s):  
Masato Yamamoto ◽  
Tomohiro Kobayashi

The load and temperature history during pressurized thermal shock (PTS) event is highly depending on the crack edge location in wall thickness direction of a reactor pressure vessel (RPV) beltline region. Therefore, the consideration of plant specific through-wall fracture toughness distribution, which is not considered in the current codes and regulations [1,2], may improve the structural integrity assessment for PTS event. The Master Curve (MC) method [3,4] is one of the methods, which can directory evaluate the fracture toughness of ferritic materials with relatively low number of any size of specimens. CRIEPI has proposed the use of very small C(T) (Mini-C(T)) specimens for the MC method. The appropriateness of Mini-C(T) technology has been demonstrated through a series of researches and round robin activities [5, 6, 7, 8, 9]. The present study evaluated the through-wall fracture toughness distribution of irradiated IAEA reference material (JRQ) by means of combination of MC method and Mini-C(T) specimens. Four thickness locations between inner surface to 1/4-T was selected. Those four layers were separately subjected to the Mini-C(T) MC evaluation in two different laboratories. Both laboratories could separately obtain valid and consistent reference temperature, To, from all the tested layers. Inner most layer exhibits 80 °C lower To compared to the 1/4-T location even though the layer has the highest fluence of 5.38 × 1019 n/cm2, while that in 1/4-T location is 2.54 × 1019 n/cm2. The results demonstrate that initial toughness distribution is dominant in the general trend of fracture toughness distribution even after the material was highly irradiated.


2018 ◽  
Vol 25 (04) ◽  
pp. 1850088 ◽  
Author(s):  
YONG-JU ZHANG ◽  
SEN-JIANG YU ◽  
HONG ZHOU ◽  
PING-GEN CAI

Liquid meniscuses were prepared by spraying silicone oil drops with different sizes onto clean glass slides. Metal (iron) films with varied thicknesses were then deposited on the liquid meniscuses by direct current magnetron sputtering. The fracture and wrinkle behaviors of the films resulting from residual stresses are investigated in detail. It is found that cracks nucleate and propagate in the film during deposition owing to the thermal expansion of the liquid substrate. Subsequent cooling of the system creates a high compressive stress, resulting in the formation of various wrinkles in the film. The initiation and shape of the cracks are closely related to the film thickness and oil drop size. The wrinkle morphologies are dependent on the stress anisotropy induced by the liquid meniscus and crack edge.


Sign in / Sign up

Export Citation Format

Share Document