A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate

2021 ◽  
Vol 132 ◽  
pp. 159-167
Author(s):  
BingBing Wang ◽  
Chunsheng Lu ◽  
CuiYing Fan ◽  
MingHao Zhao
Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


2005 ◽  
Vol 02 (04) ◽  
pp. 601-626 ◽  
Author(s):  
JEOUNG-HEUM YEON ◽  
SUNG-KIE YOUN

A meshfree multiscale method is presented for efficient analysis of solids with strain gradient plastic effects. In the analysis of strain gradient plastic solids, localization due to increased hardening of strain gradient effect appears. Chen-Wang theory is adopted, as a strain gradient plasticity theory. It represents strain gradient effects as an internal variable and retains the essential structure of classical plasticity theory. In this work, the scale decomposition is carried out based on variational form of the problem. Coarse scale is designed to represent global behavior and fine scale to represent local behavior and gradient effect by using the intrinsic length scale. From the detection of high strain gradient region, fine scale region is adopted. Each scale variable is approximated using meshfree method. Meshfree approximation is well suited for adaptivity. As a method of increasing resolution, partition of unity based extrinsic enrichment is used. Each scale problem is solved iteratively. The proposed method is applied to bending of a thin beam and bimaterial shear layer and micro-indentation problems. Size effects can be effectively captured in the results of the analysis.


2019 ◽  
Vol 8 (4) ◽  
pp. 2449-2454

The instability behaviour of a woven fibre composite plate in respect of its free vibration and buckling analysis has been presented in this paper. The woven fibre composite plate has been prepared by hand layup with bidirectional woven glass fibres in epoxy matrix. The mechanical properties of the woven fibre composite plate have been characterised experimentally and a finite element investigation has been done for the instability analysis. Modal response of the plate and the critical buckling load leading to instability of the plate to varying parameters are studied and numerical results have been presented.


2019 ◽  
Vol 57 ◽  
pp. 175-191 ◽  
Author(s):  
Wafa Adda Bedia ◽  
Mohammed Sid Ahmed Houari ◽  
Aicha Bessaim ◽  
Abdelmoumen Anis Bousahla ◽  
Abdelouahed Tounsi ◽  
...  

In present paper, a novel two variable shear deformation beam theories are developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending and buckling behaviors of nanobeams by using the nonlocal strain gradient theory. The advantage of this theory relies on its two-unknown displacement field as the Euler-Bernoulli beam theory, and it is capable of accurately capturing shear deformation effects, instead of three as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton’s principle. Analytical solutions for the bending and buckling analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending buckling of nanobeams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory. The results obtained are found to be accurate. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and buckling behaviour of nanobeams, but also comparable with the other shear deformation theories which contain more number of unknowns


Sign in / Sign up

Export Citation Format

Share Document