Differential exponential entropy-based multilevel threshold selection methodology for colour satellite images using equilibrium-cuckoo search optimizer

2022 ◽  
Vol 109 ◽  
pp. 104599
Author(s):  
Monorama Swain ◽  
Tanmaya Tapaswini Tripathy ◽  
Rutuparna Panda ◽  
Sanjay Agrawal ◽  
Ajith Abraham
2014 ◽  
Vol 5 (2) ◽  
pp. 1-21 ◽  
Author(s):  
Arpita Sharma ◽  
Samiksha Goel

This paper proposes two novel nature inspired decision level fusion techniques, Cuckoo Search Decision Fusion (CSDF) and Improved Cuckoo Search Decision Fusion (ICSDF) for enhanced and refined extraction of terrain features from remote sensing data. The developed techniques derive their basis from a recently introduced bio-inspired meta-heuristic Cuckoo Search and modify it suitably to be used as a fusion technique. The algorithms are validated on remote sensing satellite images acquired by multispectral sensors namely LISS3 Sensor image of Alwar region in Rajasthan, India and LANDSAT Sensor image of Delhi region, India. Overall accuracies obtained are substantially better than those of the four individual terrain classifiers used for fusion. Results are also compared with majority voting and average weighing policy fusion strategies. A notable achievement of the proposed fusion techniques is that the two difficult to identify terrains namely barren and urban are identified with similar high accuracies as other well identified land cover types, which was not possible by single analyzers.


Author(s):  
Jagan Kumar. N ◽  
Agilandeeswari. L ◽  
Prabukumar. M

<p>The research work is to improve the segmentation of the color satellite images. In this proposed method the color satellite image can be segmented by using Tsallis entropy and granular computing methods with the help of cuckoo search algorithm. The Tsallis and granular computing methods will used to find the maximum possibility of threshold limits and the cuckoo search will find the optimized threshold values based on threshold limit that is calculated by the Tsallis entropy and granular computing methods and the multilevel thresholding  will used for the segmentation of color satellite images based on the optimized threshold value that will find by this work and these methods will help to select the optimized threshold values for multiple thresholding effectively.<strong></strong></p>


Author(s):  
Harish Kundra ◽  
Wasim Khan ◽  
Meenakshi Malik ◽  
Kantilal Pitambar Rane ◽  
Rahul Neware ◽  
...  

The firefly algorithm and cuckoo search are the meta-heuristic algorithms efficient to determine the solution for the searching and optimization problems. The current work proposes an integrated concept of quantum-inspired firefly algorithm with cuckoo search (IQFACS) that adapts both algorithms’ expedient attributes to optimize the solution set. In the IQFACS algorithm, the quantum-inspired firefly algorithm (QFA) ensures the diversification of fireflies-based generated solution set using the superstitions quantum states of the quantum computing concept. The cuckoo search (CS) algorithm uses the Lévy flight attribute to escape the QFA from the premature convergence and stagnation stage more effectively than the quantum principles. Here, the proposed algorithm is applied for the application of optimal path planning. Before using the proposed algorithm for path planning, the algorithm is tested on different optimization benchmark functions to determine the efficacy of the proposed IQFACS algorithm than the firefly algorithm (FA), CS, and hybrid FA and CS algorithm. Using the proposed IQFACS algorithm, path planning is performed on the satellite images with vegetation as the focused region. These satellite images are captured from Google Earth and belong to the different areas of India. Here, satellite images are converted into morphologically processed binary images and considered as maps for path planning. The path planning process is also executed with the FA, CS, and QFA algorithms. The performance of the proposed algorithm and other algorithms are accessed with the evaluation of simulation time and the number of cycles to attain the shortest path from defined source to destination. The error rate measure is also incorporated to analyze the overall performance of the proposed IQFACS algorithm over the other algorithms.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


Metrologiya ◽  
2020 ◽  
pp. 15-37
Author(s):  
L. P. Bass ◽  
Yu. A. Plastinin ◽  
I. Yu. Skryabysheva

Use of the technical (computer) vision systems for Earth remote sensing is considered. An overview of software and hardware used in computer vision systems for processing satellite images is submitted. Algorithmic methods of the data processing with use of the trained neural network are described. Examples of the algorithmic processing of satellite images by means of artificial convolution neural networks are given. Ways of accuracy increase of satellite images recognition are defined. Practical applications of convolution neural networks onboard microsatellites for Earth remote sensing are presented.


Author(s):  
Marco, A. Márquez-Linares ◽  
Jonathan G. Escobar--Flores ◽  
Sarahi Sandoval- Espinosa ◽  
Gustavo Pérez-Verdín

Objective: to determine the distribution of D. viscosa in the vicinity of the Guadalupe Victoria Dam in Durango, Mexico, for the years 1990, 2010 and 2017.Design/Methodology/Approach: Landsat satellite images were processed in order to carry out supervised classifications using an artificial neural network. Images from the years 1990, 2010 and 2017 were used to estimate ground cover of D. viscosa, pastures, crops, shrubs, and oak forest. This data was used to calculate the expansion of D. viscosa in the study area.Results/Study Limitations/Implications: the supervised classification with the artificial neural network was optimal after 400 iterations, obtaining the best overall precision of 84.5 % for 2017. This contrasted with the year 1990, when overall accuracy was low at 45 % due to less training sites (fewer than 100) recorded for each of the land cover classes.Findings/Conclusions: in 1990, D. viscosa was found on only five hectares, while by 2017 it had increased to 147 hectares. If the disturbance caused by overgrazing continues, and based on the distribution of D. viscosa, it is likely that in a few years it will have the ability to invade half the study area, occupying agricultural, forested, and shrub areas


Sign in / Sign up

Export Citation Format

Share Document