scholarly journals Improved Color Satellite Image Segmentation Using Tsallis Entropy and Granular Computing

Author(s):  
Jagan Kumar. N ◽  
Agilandeeswari. L ◽  
Prabukumar. M

<p>The research work is to improve the segmentation of the color satellite images. In this proposed method the color satellite image can be segmented by using Tsallis entropy and granular computing methods with the help of cuckoo search algorithm. The Tsallis and granular computing methods will used to find the maximum possibility of threshold limits and the cuckoo search will find the optimized threshold values based on threshold limit that is calculated by the Tsallis entropy and granular computing methods and the multilevel thresholding  will used for the segmentation of color satellite images based on the optimized threshold value that will find by this work and these methods will help to select the optimized threshold values for multiple thresholding effectively.<strong></strong></p>

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Kanjana Charansiriphaisan ◽  
Sirapat Chiewchanwattana ◽  
Khamron Sunat

Otsu’s function measures the properness of threshold values in multilevel image thresholding. Optimal threshold values are necessary for some applications and a global search algorithm is required. Differential evolution (DE) is an algorithm that has been used successfully for solving this problem. Because the difficulty of a problem grows exponentially when the number of thresholds increases, the ordinary DE fails when the number of thresholds is greater than 12. An improved DE, using a new mutation strategy, is proposed to overcome this problem. Experiments were conducted on 20 real images and the number of thresholds varied from 2 to 16. Existing global optimization algorithms were compared with the proposed algorithms, that is, DE, rank-DE, artificial bee colony (ABC), particle swarm optimization (PSO), DPSO, and FODPSO. The experimental results show that the proposed algorithm not only achieves a more successful rate but also yields a lower threshold value distortion than its competitors in the search for optimal threshold values, especially when the number of thresholds is large.


Author(s):  
Goutam Kumar Bose ◽  
Pritam Pain

In the present research work selection of significant machining parameters depending on nature-inspired algorithm is prepared, during machining alumina-aluminum interpenetrating phase composites through electrochemical grinding process. Here during experimentation control parameters like electrolyte concentration (C), voltage (V), depth of cut (D) and electrolyte flow rate (F) are considered. The response data are initially trained and tested applying Artificial Neural Network. The paradoxical responses like higher material removal rate (MRR), lower surface roughness (Ra), lower overcut (OC) and lower cutting force (Fc) are accomplished individually by employing Cuckoo Search Algorithm. A multi response optimization for all the response parameters is compiled primarily by using Genetic algorithm. Finally, in order to achieve a single set of parametric combination for all the outputs simultaneously fuzzy based Grey Relational Analysis technique is adopted. These nature-driven soft computing techniques corroborates well during the parametric optimization of ECG process.


Author(s):  
A. Sharma ◽  
J. K. Ghosh

Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data) are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.


Author(s):  
P. B. Budha ◽  
A. Bhardwaj

Abstract. Locating landslides and determining its extent is deemed an important task in estimating loss and damage and carry out mitigation works. As landslides are recurring phenomena in the research site, Siwalik Hills of western Nepal, freely available Sentinel-2 satellite images were considered to delineate landslides. The method employed in this process was Object-Based Image Analysis carried out in eCognition software using multiresolution segmentation algorithm. Parameters taken for segmentation were a scale of 20, the shape of 0.3, and compactness of 0.5. When a threshold value of < 0.35 in NDVI was used to distinguish landslides from image objects, some non-landslide objects were also selected. These false positives were removed successively using the threshold values on different bands, band ratios, slope information, hillshade and geometrical properties of image objects. There were altogether 264 landslides detected in the study area with size ranging from 300 m2 to 1675 m2 and landslide density of approximately 2 per km2. The accuracy, when compared to reference inventory, showed correctness and completeness measuring 80.28% and 66.27% respectively. These results showed semi-automatic landslide extraction was successful and Sentinel-2 can be used for similar tasks in other areas of Siwalik.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sai Prasanthi Kasimsetti ◽  
Asdaque Hussain

Purpose The research work is attained by Spurious Transmission–based Enhanced Packet Reordering Method (ST-EPRM). The packet reordering necessity is evaded by presenting random linear network coding process on wireless network physical layer which function on basis of sequence numbers. The spurious retransmission happening over wireless network is obtained by presenting monitoring concept for reducing number of spurious retransmissions because it might need more than three DUPACKs for triggering fast retransmit. This monitoring node performs as centralized node as well variation amid buffer length and number of packets being sent can be predicted. This information helps in differentiating spurious retransmission from the packet loss. Design/methodology/approach Based on transmission detection, action is accomplished whether to retransmit or evade transmission. Monitoring node selection is achieved by presenting improved cuckoo search algorithm. The modified support vector machine algorithm is greatly used for variation-based spurious transmission. Findings The research work which is attained by ST-EPRM. The packet reordering necessity is evaded by presenting random linear network coding process on wireless network physical layer which function on basis of sequence numbers. The spurious retransmission happening over wireless network is obtained by presenting monitoring concept for reducing number of spurious retransmissions because it might need more than three DUPACKs for triggering fast retransmit. This monitoring node performs as centralized node as well variation amid buffer length and number of packets being sent can be predicted. This information helps in differentiating spurious retransmission from the packet loss. Originality/value Based on transmission detection, action is accomplished whether to retransmit or evade transmission. Monitoring node selection is achieved by presenting improved cuckoo search algorithm. The modified support vector machine algorithm is greatly used for variation-based spurious transmission.


Author(s):  
Asokan Sivaprakash ◽  
Samuel Nadar Edward Rajan ◽  
Sundaramoorthy Selvaperumal

Background: Privacy protection has been a critical issue in the delivery of medical images for telemedicine, e-health care and other remote medical systems. Objective: The aim of this proposed work is to implement a secure, reversible, digital watermarking technique for the transmission of medical data remotely in health care systems. Methods: In this research work, we employed a novel optimized digital watermarking scheme using discrete wavelet transform and singular value decomposition using cuckoo search algorithm based on Lévy flight for embedding watermark into the grayscale medical images of the patient. The performance of our proposed algorithm is evaluated on four different 256 × 256 grayscale host medical images and a 32 × 32 binary logo image. Results: The performance of the proposed scheme in terms of peak signal to noise ratio was remarkably high, with an average of 55.022dB compared to other methods. Conclusion: Experimental results reveal that the proposed method is capable of achieving superior performance compared to some of the state-of-art schemes in terms of robustness, security and high embedding capacity which is required in the field of telemedicine and e-health care system.


2013 ◽  
Vol 11 ◽  
pp. 16-30 ◽  
Author(s):  
Sanjay Agrawal ◽  
Rutuparna Panda ◽  
Sudipta Bhuyan ◽  
B.K. Panigrahi

2019 ◽  
Vol 16 (9) ◽  
pp. 4003-4007 ◽  
Author(s):  
Neetu Manocha ◽  
Rajeev Gupta

Due to environment untidiness and inappropriate setting or dealing of camera, a satellite image contains blur or other types of noises. These images are captured by satellites consist lots of information about the surface of earth or other planets. But, due to blur or noise, the quality of these images is degraded. Now days, there are many fields in which satellite images are used, which effects the environment. The accuracy and effective visual display of satellite images with high image resolution using CBIR technique is major concern. This paper presents a comparative analysis of existing satellite image enhancement techniques to reduce the blur of an image on the basis of accuracy and response time. The aim of research work is to eliminate the noise without losing high frequency details and to enhance the image for effective visual display.


Sign in / Sign up

Export Citation Format

Share Document