Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack

2013 ◽  
Vol 27 ◽  
pp. 286-296 ◽  
Author(s):  
Yogesh Pandya ◽  
Anand Parey
2016 ◽  
Vol 66 ◽  
pp. 502-514 ◽  
Author(s):  
Zaigang Chen ◽  
Wanming Zhai ◽  
Yimin Shao ◽  
Kaiyun Wang ◽  
Guohua Sun

Author(s):  
Nagaraj K. Arakere ◽  
C. Nataraj

Abstract An analytical investigation of the nonlinear dynamics of a high-speed spur-gear pair supported on journal bearings is presented. Dynamic tooth loads result from the interaction between periodic variation of gear mesh stiffness, involute tooth profile errors and gear rotor dynamics. Accurate estimation of dynamic tooth loads, as the gear teeth engage and disengage, is critical for fatigue life estimation. Load-deflection characteristics of a spur gear mesh and the periodically varying gear mesh stiffness is developed using a finite element model. Relative displacement between the gear teeth (transmission error) due to tooth deflection along the line of action is evaluated. The coupled torsional-lateral vibrations of a spur-gear pair supported on journal bearings is modeled as a six degree of freedom system. The time dependent radial and tangential forces acting on the gear shaft supported on journal bearings is evaluated. Short bearing theory is used for modeling the journal bearing dynamics. The resulting nonlinear equations of motion are numerically integrated to obtain gear and pinion whirl orbits due to unbalance excitation and dynamic tooth load variation. Dynamic tooth loads are compared with the mean load due to torque transmission.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


2015 ◽  
Vol 799-800 ◽  
pp. 570-575
Author(s):  
Zheng Min Qing Li ◽  
Qing Bin Zhao ◽  
Xiao Zhen Li

In this study, a mesh stiffness model of spur gear drives considering the tooth corrosion effect, which is based on Ishikawa model, is proposed. The fidelity of mesh stiffness based on the proposed model is checked by comparing the result with a benchmark result from the reference and the effect of the tooth corrosion on mesh stiffness is analyzed. The prediction indicates mesh stiffness is insensitive to the tooth corrosion, but this conclusion has a signification for assessing the stability of inherent properties of a spur gear drive when the tooth corrosion is produced.


Author(s):  
M H Arafa ◽  
M M Megahed

This paper presents a finite element (FE) modelling technique to evaluate the mesh compliance of spur gears. Contact between the engaging teeth is simulated through the use of gap elements. Analysis is performed on several gear combinations and the variation in tooth compliance along the contact location is presented in a non-dimensional form. Results are compared with earlier predictions based on analytical, numerical and experimental methods. Load sharing among the mating gear teeth is discussed, and the overall gear mesh stiffness together with its cyclic variation along the path of contact is evaluated.


Sign in / Sign up

Export Citation Format

Share Document