Fatigue behavior and life predictions of thermally oxidized Ti6Al4V alloy according to oxidation parameters

Author(s):  
Gustavo Dória Lima ◽  
Brenno Lima Nascimento ◽  
Isau de Souza Alves Júnior ◽  
Matheus Porto Trindade ◽  
Sandro Griza
Author(s):  
Mario A. Polanco-Loria ◽  
Håvar Ilstad

This work presents a numerical-experimental methodology to study the fatigue behavior of dented pipes under internal pressure. A full-scale experimental program on dented pipes containing gouges were achieved. Two types of defects were studied: metal loss (plain dent) and sharp notch. Both defects acting independently reduce the fatigue life performance but their combination is highly detrimental and must be avoided. We did not find a severity threshold (e.g. dent depth or crack depth) where these defects could coexist. In addition, based on numerical analyses we proposed a new expression for stress concentration factor (SCF) in line with transversal indentation. This information was successfully integrated into a simple fatigue model where the fatigue life predictions were practically inside the window of experimental results.


2007 ◽  
Vol 561-565 ◽  
pp. 2179-2182 ◽  
Author(s):  
Mehmet Cingi ◽  
Onur Meydanoglu ◽  
Hasan Guleryuz ◽  
Murat Baydogan ◽  
Huseyin Cimenoglu ◽  
...  

In this study, the effect of thermal oxidation on the high cycle rotating bending fatigue behavior of Ti6Al4V alloy was investigated. Oxidation, which was performed at 600°C for 60 h in air, considerably improved the surface hardness and particularly the yield strength of the alloy without scarifying the tensile ductility. Unfortunately, the rotating bending fatigue strength at 5x106 cycles decreased from about 610 MPa to about 400 MPa upon oxidation. Thus, thermal oxidation leaded a reduction in the fatigue strength of around 34%, while improving the surface hardness (HV0.1) and yield strength 85 % and 36 %, respectively.


2007 ◽  
pp. 2179-2182
Author(s):  
Mehmet Cingi ◽  
Onur Meydanoglu ◽  
Hasan Guleryuz ◽  
Murat Baydogan ◽  
Huseyin Cimenoglu ◽  
...  

Author(s):  
Danilo A. Renzo ◽  
Emanuele Sgambitterra ◽  
Pietro Magarò ◽  
Franco Furgiuele ◽  
Carmine Maletta ◽  
...  

Author(s):  
Adam J. Rinehart ◽  
Peter B. Keating

A full scale experimental study has demonstrated that long, unrestrained pipeline dents typically experience fatigue cracking in the dent contact region and have significantly shorter fatigue lives compared to other dent types studied. Furthermore, these dents often fully reround under normal pipeline operating pressures, making them difficult to reliably detect and assess using existing depth-based approaches. Several conditions unique to the dent contact region accelerate fatigue damage accumulation and are considered in a case-specific long dent fatigue life prediction method. First, the contact region develops significant bending stresses that contribute to a higher rate of fatigue crack growth. Second, history dependent, thru-thickness residual bending stresses that may have a significant influence on fatigue behavior are present in the contact region as a result of plastic deformation associated with dent formation and subsequent rebounding. A method for predicting the fatigue life of long dents that accounts for these factors is presented here and is used to analyze specific cases for which laboratory data is available. Nonlinear finite element modelling of the dent life cycle, including the indentation and rebounding phases, is used to determine local stress range behaviors and residual stress distributions. The application of appropriate fracture mechanics based models of fatigue is discussed and demonstrated. Fatigue life predictions are made on a case by case basis for situations studied in the laboratory so that the validity and accuracy of the approach presented here may be studied.


Author(s):  
Paulina Leiva-Padilla ◽  
Juliette Blanc ◽  
Aitor Salgado ◽  
Ferhat Hammoum ◽  
Pierre Hornych

Truck platooning for the transportation of loads is a strategy recently proposed by the automotive sector to cope with traffic congestion, fuel consumption, and operational costs. This new way of configuring trucks changes the typical pressures pavements structures experience. For this reason, the research efforts of the pavement sector should be aligned with the automotive sector to propose road-friendly platoon configurations. This is one of the objectives of the European project ENSEMBLE. ENSEMBLE, as indicated by its acronym, works on ENabling SafE Multi-Brand pLatooning for Europe. In this context, the present study presents a real scale test done in the Applus IDIADA facilities to evaluate the fatigue behavior of a pavement structure subjected to individual and platoon truck configurations. The effects of parameters such as traffic distribution through the year and by time of day, percentage of platoons, truck loads, number of trucks in platoon configuration, lateral wandering, and inter-truck distances were evaluated. The study’s findings revealed that the reduced rest times between trucks in the platoon configuration reduce the recovery time of the asphalt layers, increasing the fatigue damage to the pavement at high temperature conditions. This underlines the need for further research to allow the proper implementation of truck platoons. For example, research is needed to define strategies to make truck platoon configurations more pavement-friendly and analyze the costs associated with the changes in the required road maintenance/rehabilitation treatments, among others.


1995 ◽  
Author(s):  
E. Troiano ◽  
J. H. Underwood ◽  
D. Crayon ◽  
R. T. Abbott

2017 ◽  
Vol 891 ◽  
pp. 317-321 ◽  
Author(s):  
Adrián Bača ◽  
Radomila Konečná ◽  
Gianni Nicoletto

Direct Metal Laser Sintering (DMLS) is additive manufacturing (AM) process that can produce near net shape parts from metal powders such as titanium alloys. DMLS is a layer by layer additive manufacturing technique based on high power fiber laser that creates solid layers from loose powder material and joins them in an additive manner. The specific DMLS process conditions, lead to a specific and complex microstructure and to mechanical properties that show a degree of directionality. It was found that microstructural characteristics are related to the building process parameters. The aim of this work is to evaluate the fatigue performance of the Ti6Al4V alloy depending on the process parameters, building orientations and post-process heat treatment.


2013 ◽  
Vol 66 ◽  
pp. 307-314 ◽  
Author(s):  
F. Yıldız ◽  
A.F. Yetim ◽  
A. Alsaran ◽  
A. Çelik ◽  
İ. Kaymaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document