On the essential work of fracture of linear low-density-polyethylene. I. Precision of the testing method

2009 ◽  
Vol 76 (18) ◽  
pp. 2788-2798 ◽  
Author(s):  
A. Pegoretti ◽  
L. Castellani ◽  
L. Franchini ◽  
P. Mariani ◽  
A. Penati
2005 ◽  
Vol 40 (19) ◽  
pp. 5323-5326 ◽  
Author(s):  
Wei Yang ◽  
Bang-Hu Xie ◽  
Wei Shi ◽  
Min Zuo ◽  
Zhong-Ming Li ◽  
...  

2011 ◽  
Vol 465 ◽  
pp. 169-174 ◽  
Author(s):  
Sharon Kao-Walter ◽  
M. Walter ◽  
A. Dasari ◽  
A. Leon

The fracture behaviour of laminated materials was studied in this work. The materials used in this work were low-density polyethylene (LDPE) laminated on polyethylene (PET). The thickness of the LDPE was 27 µm and the PET was 100 µm. Experiments were performed by using a 2-leg trousers specimen to analyse the tearing behaviour of the laminate in relation to the delamination. A clear delamination zone was observed during the crack propagation by tearing. Furthermore, a finite element calculation was performed to simulate the behavior around the crack tip during the tearing. A correlation between adhesion and crack propagation was discussed. Finally, the theory of Essential Work of Fracture (EWF) was used for predicting the specific total work of fracture along the tear path across the plastic zones.


2014 ◽  
Vol 3 ◽  
pp. 756-763 ◽  
Author(s):  
Fabiano Moreno Peres ◽  
José Ricardo Tarpani ◽  
Cláudio Geraldo Schön

2019 ◽  
Vol 961 ◽  
pp. 16-22
Author(s):  
Purnomo ◽  
Putu Hadi Setyarini ◽  
Dwi Sulistyaningsih

The aim of this study is to investigate the behavior of banana fiber (BF)-low-density polyethylene (LDPE) composite fracture toughness. The LDPE pellets are transformed into powder form which is then functioned as a matrix reinforced with banana fiber (BF). The composites were formed by injection molding techniques which are followed by atmospheric-pressure annealing at 90°C for 24 hours. The composite fracture toughness behavior was evaluated using the essential work of fracture (EWF) approach. The results show that fracture toughness which is characterized by essential fracture work (we) value increases by the presence of BF up to 5 wt.%. However, the we value starts to decrease in the composite with BF content of 6 wt.%. There is a mismatch about the phenomenon of non-essential fracture work. Stress-whitened zones can be seen and observed but non-essential fracture work based on curves is a negative value.


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document