Experimental and numerical investigation of the shear behavior of steel-plate composite (SC) beams without shear reinforcement

2016 ◽  
Vol 127 ◽  
pp. 495-509 ◽  
Author(s):  
Kadir C. Sener ◽  
Amit H. Varma ◽  
Jungil Seo
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1525 ◽  
Author(s):  
Altug Yavas ◽  
Cumali Ogun Goker

In the presented paper, the impacts of steel fiber use and tensile reinforcement ratio on shear behavior of Ultra-High Performance Concrete (UHPC) beams were investigated from the point of different tensile reinforcement ratios. In the scope of the experimental program, a total of eight beams consisting of four reinforcement ratios representing low to high ratios ranged from 0.8% to 2.2% were casted without shear reinforcement and subjected to the four-point loading test. While half of the test beams included 30 mm end-hooked steel fibers (SF-UHPC) with 2.0 vol%, the remaining beams were produced without the fiber to show possible effectiveness of the fiber use. The shear performances were discussed in terms of the load—deflection response, cracking pattern and failure mode, first cracking load and ultimate shear strength. In this sense, all the non-fiber beams were failed by shear with a dramatic load drop, regardless of the tensile reinforcement amount, before the yielding of reinforcement and they produced no deflection capability. The test results showed that while the inclusion of steel fibers to the UHPC mixture with low reinforcement ratios changed the failure mode from the shear to flexure, it significantly enhanced the ultimate shear strength in the case of higher reinforcement ratio through the SF-UHPC’ superior mechanical properties and fibers’ crack-bridging ability.


2013 ◽  
Vol 351-352 ◽  
pp. 1552-1557
Author(s):  
Da Guo Wang ◽  
Zhi Xiu Wang ◽  
Bing Xu

Based on micromechanics, an elastic-plastic-brittle damage model of concrete beam reinforced with stick steel is proposed by considering the aggregate gradation curve algorithms and the heterogeneity. In the model, the concrete beam reinforced with stick steel is taken as a five-phase composite material that consists of the mortar matrix, coarse aggregate, bonds between mortar and aggregate, steel plate, and the adhesive layer between steel plate and concrete beam. Through the numerical investigation on shear failure of concrete beam reinforced with stick steel under external force, the results show that the model can clearly simulate microscopic plastic yield, and the initiation and extension of crack. The strength of the steel plate is relatively stronger, so it cant enhance the shear capability of the each side of the beam and the concrete beam bears the larger shear stress, which results that a large number of elements, from the supports to the load points, begin to yield. When the strain of the elements exceeds the yield strength, the elements will produce failure until the failure of the whole specimen. The final failure mode of concrete beam reinforced with stick steel is the shear failure.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 423
Author(s):  
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Results of an experimental investigation aimed at studying the effect of steel fibers on the shear behavior of concrete deep beams made with a 100% recycled concrete aggregate (RCA) are presented in this paper. The study comprised testing of seven concrete deep beam specimens with a shear span-to-depth ratio (a/h) of 1.6. Two beams were made of natural aggregates (NAs) without steel fibers, two beams were made of a 100% RCA without steel fibers, and three beams were made of RCA-based concrete with steel fibers at volume fractions (vf) of 1, 2, and 3%. Two of the beams without steel fibers included a minimum shear reinforcement. Test results showed that the beam with a 100% RCA without steel fibers exhibited a lower post-cracking stiffness, reduced shear cracking load, and lower shear capacity than those of the NA-based control beam. The detrimental effect of the RCA on the shear response was less pronounced in the presence of the minimum shear reinforcement. The addition of steel fibers significantly improved the shear response of the RCA-based beams. The post-cracking stiffness of the RCA-based concrete beams with steel fibers coincided with that of a similar beam without fibers containing the minimum shear reinforcement. The use of steel fibers in RCA beams at vf of 1 and 2% restored 80 and 90% of the shear capacity, respectively, of a similar beam with the minimum shear reinforcement. The response of the RCA specimen with vf of 3% outperformed that of the NA-based control beam with the minimum shear reinforcement, indicating that steel fibers can be used in RCA deep beams as a substitution to the minimum shear reinforcement. The shear capacities obtained from the tests were compared with predictions of published analytical models.


2019 ◽  
Vol 21 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Philipp Schmidt ◽  
Dominik Kueres ◽  
Josef Hegger

2020 ◽  
Vol 125 ◽  
pp. 103670 ◽  
Author(s):  
Wei Han ◽  
Yujing Jiang ◽  
Hengjie Luan ◽  
Yiteng Du ◽  
Yinge Zhu ◽  
...  

2017 ◽  
Vol 19 (1) ◽  
pp. 305-317 ◽  
Author(s):  
Sifatullah Bahij ◽  
Saheed K. Adekunle ◽  
Mohammed Al-Osta ◽  
Shamsad Ahmad ◽  
Salah U. Al-Dulaijan ◽  
...  

2017 ◽  
Vol 15 (02) ◽  
pp. 1850001 ◽  
Author(s):  
George Markou ◽  
Mohammad AlHamaydeh

This paper presents the numerical investigation of nine Glass Fiber-Reinforced Polymer (GFRP) concrete deep beams through the use of numerically-efficient 20-noded hexahedral elements. Cracking is taken into account by means of the smeared crack approach and the bars are simulated as embedded rod elements. The developed numerical models are validated against published experimental results. The validation beams spanned a practical range of varying design parameters; namely, shear span-to-depth ratio, concrete specified compressive strength and flexural reinforcement ratio. The motivation for this research is to accurately yet efficiently capture the mechanical behavior of the GFRP-reinforced concrete deep beams. The presented numerical investigation demonstrated close correlations of the force–deformation relationships that are numerically predicted and their experimental counterparts. Moreover, the numerically predicted modes of failure are also found to be conformal to those observed experimentally. The proposed modeling approach that overcame previous computational limitations has further demonstrated its capability to accurately model larger and deeper beams in a computationally efficient manner. The validated modeling technique can then be efficiently used to perform extensive parametric investigations related to behavior of this type of structural members. The modeling method presented in this work paves the way for further parametric investigations of the mechanical behavior of GFRP-reinforced deep beams without shear reinforcement that will serve as the base for proposing new design guidelines. As a deeper understanding of the behavior and the effect of the design parameters is attained, more economical and safer designs will emerge.


Sign in / Sign up

Export Citation Format

Share Document