Behaviors and design method for distortional buckling of thin-walled irregular-shaped aluminum alloy struts under axial compression

2017 ◽  
Vol 153 ◽  
pp. 118-135
Author(s):  
Yicun Chang ◽  
Mei Liu ◽  
Peijun Wang ◽  
Xiulin Li
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xingyou Yao

The cold-formed steel (CFS) lipped channel section with circular holes has been widely used in low-rise and multistory building structures as the column. However, the circular hole in the web makes the lipped channel column become susceptible to buckle. A total of 54 CFS lipped channel axial compression columns with and without circular holes were used to study the buckling behavior and the effective width design method. The interaction of the local buckling and the distortional buckling were observed for the short and intermediate columns, while the slender columns were controlled by the interaction of the local buckling, distortional buckling, and flexural buckling or flexural-torsional buckling. The experimental failure loads were gradually decreased with the increase in the diameter of the circular hole for the specimens with the same section. The failure loads of the specimens with two holes were lower than those of the specimens with one hole with same section and same diameter of holes. Then, the experimental results were used to validate a nonlinear finite element model (FEM) previously developed by the authors. The validated FEM was subsequently used to obtain additional 36 numerical failure results concerning the effects of the length, the section, and the diameter and the number of the circular holes. Furthermore, the proposal to calculate the distortional buckling coefficient of the CFS lipped channel section with circular holes were put forward based on numerical analysis considering the reduction of effect of holes. Finally, a proposal to improve the effective width method (EWM) design approach for CFS lipped channel sections with circular holes under axial compression was presented. The comparisons between experimental and numerical capacities and their calculations provided by the proposed EWM design method illustrate a great application of the proposed approach.


2011 ◽  
Vol 49 (1) ◽  
pp. 106-111 ◽  
Author(s):  
L. Ye ◽  
G. Lu ◽  
L.S. Ong

2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


1995 ◽  
Vol 121 (4) ◽  
pp. 757-766 ◽  
Author(s):  
Reynaud L. Serrette ◽  
Teoman Peköz

The analysis of part I is extended to deal with the case of free-edged rectangular plates having an initial curvature about an axis parallel to one pair of opposite edges and loaded by distributed bending moments applied to the straight edges and compressive forces applied to the curved edges. In particular, the stability and post-buckling behaviour of such plates subjected to the compressive forces alone is studied. The axially symmetrical buckling of thin-walled circular tubes in axial compression is also considered. Experimental plates are found to buckle at loads rather lower than those predicted.


2021 ◽  
Vol 166 ◽  
pp. 108118
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Peng Ge ◽  
Yanan Gu ◽  
...  

2021 ◽  
Vol 246 ◽  
pp. 113033
Author(s):  
Tianxiang Xu ◽  
Sumei Zhang ◽  
Jiepeng Liu ◽  
Xuanding Wang

Sign in / Sign up

Export Citation Format

Share Document