Damage monitoring of concrete laminated interface using piezoelectric-based smart aggregate

2021 ◽  
Vol 228 ◽  
pp. 111489
Author(s):  
Shao-Fei Jiang ◽  
Juan Wang ◽  
Si-Yi Tong ◽  
Sheng-Lan Ma ◽  
Ming-Bei Tuo ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6337
Author(s):  
Quang-Quang Pham ◽  
Ngoc-Loi Dang ◽  
Quoc-Bao Ta ◽  
Jeong-Tae Kim

This study investigates the feasibility of smart aggregate (SA) sensors and their optimal locations for impedance-based damage monitoring in prestressed concrete (PSC) anchorage zones. Firstly, numerical stress analyses are performed on the PSC anchorage zone to determine the location of potential damage that is induced by prestressing forces. Secondly, a simplified impedance model is briefly described for the SA sensor in the anchorage. Thirdly, numerical impedance analyses are performed to explore the sensitivities of a few SA sensors in the anchorage zone under the variation of prestressing forces and under the occurrence of artificial damage events. Finally, a real-scale PSC anchorage zone is experimentally examined to evaluate the optimal localization of the SA sensor for concrete damage detection. Impedance responses measured under a series of prestressing forces are statistically quantified to estimate the performance of damage monitoring via the SA sensor in the PSC anchorage.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6438
Author(s):  
Guangtao Lu ◽  
Xin Zhu ◽  
Tao Wang ◽  
Zhiqiang Hao ◽  
Bohai Tan

A novel piezoceramic stack-based smart aggregate (PiSSA) with piezoceramic wafers in series or parallel connection is developed to increase the efficiency and output performance over the conventional smart aggregate with only one piezoelectric patch. Due to the improvement, PiSSA is suitable for situations where the stress waves easily attenuate. In PiSSA, the piezoelectric wafers are electrically connected in series or parallel, and three types of piezoelectric wafers with different electrode patterns are designed for easy connection. Based on the theory of piezo-elasticity, a simplified one-dimensional model is derived to study the electromechanical, transmitting and sensing performance of PiSSAs with the wafers in series and parallel connection, and the model was verified by experiments. The theoretical results reveal that the first resonance frequency of PiSSAs in series and parallel decreases as the number or thickness of the PZT wafers increases, and the first electromechanical coupling factor increases firstly and then decrease gradually as the number or thickness increases. The results also show that both the first resonance frequency and the first electromechanical coupling factor of PiSSA in series and parallel change no more than 0.87% as the Young’s modulus of the epoxy increases from 0.5 to 1.5 times 3.2 GPa, which is helpful for the fabrication of PiSSAs. In addition, the displacement output of PiSSAs in parallel is about 2.18–22.49 times that in series at 1–50 kHz, while the voltage output of PiSSAs in parallel is much less than that in parallel, which indicates that PiSSA in parallel is much more suitable for working as an actuator to excite stress waves and PiSSA in series is suitable for working as a sensor to detect the waves. All the results demonstrate that the connecting type, number and thickness of the PZT wafers should be carefully selected to increase the efficiency and output of PiSSA actuators and sensors. This study contributes to providing a method to investigate the characteristics and optimize the structural parameters of the proposed PiSSAs.


2015 ◽  
Vol 54 (4) ◽  
pp. 934 ◽  
Author(s):  
Xiaochuan Zhang ◽  
Ge Yang ◽  
Nan Zhan ◽  
Hongwei Ji

2007 ◽  
Vol 347 ◽  
pp. 405-410 ◽  
Author(s):  
Daniel J. Inman ◽  
Justin Farmer ◽  
Benjamin L. Grisso

Autonomous, wireless structural health monitoring is one of the key goals of the damage monitoring industry. One of the main roadblocks to achieving autonomous sensing is removing all wiring to and from the sensor. Removing external connections requires that the sensor have its own power source in order to be able to broadcast/telemetry information. Furthermore if the sensor is to be autonomous in any way, it must contain some sort of computing and requires additional power to run computational algorithms. The obvious choice for wireless power is a battery. However, batteries often need periodical replacement. The work presented here focuses on using ambient energy to power an autonomous sensor system and recharge batteries and capacitors used to run an active sensing system. In particular, we examine methods of harvesting energy to run sensor systems from ambient vibration energy using piezoelectric elements.


Sign in / Sign up

Export Citation Format

Share Document