Anomaly detection in long-term tunnel deformation monitoring

2022 ◽  
Vol 250 ◽  
pp. 113383
Author(s):  
Kristof Maes ◽  
Wim Salens ◽  
Gerrit Feremans ◽  
Koen Segher ◽  
Stijn François
2012 ◽  
Vol 8 (10) ◽  
pp. 972893 ◽  
Author(s):  
L. Ran ◽  
T. H. Yi ◽  
X. W. Ye ◽  
X. B. Dong

The project of Hangzhou Metro Line 1 is the first metro line of the urban rapid rail transit system in Hangzhou, China, which is one of the largest municipal projects of Hangzhou and is being constructed commencing from March 28, 2007 and expected to be completed by October 1, 2012. This metro line has a total length of 48 km and 34 stations, connecting Hangzhou downtown with the suburban area of the city. Owing to the complex geological condition, harsh construction situation, and immature computational methodology, construction of metro systems is often subjected to considerable sources of uncertainties. To ensure the safety of the adjacent building structures, it is a vital necessity to monitor deep excavations of metro tunnels at their in-construction stage. This paper introduces the instrumentation system for settlement monitoring of a metro-tunnel airshaft of the project of Hangzhou Metro Line 1 during the construction of deep excavation. The long-term settlement data monitored by the measurement markers installed at the surface ground and in the depth direction of the airshaft excavation construction site are analyzed and presented in detail. The obtained results indicate that the settlements at the instrumented locations of the construction site during different construction steps vary steadily in an allowable variation range.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xianzhou Lyu ◽  
Weiming Wang

Shaft linings in thick weakly cemented stratum have the disadvantages of large deformation and repeated damage after repair. Considering the typical geologic characteristics and the failure characteristics of shaft linings, we establish a multilayer automatic deformation monitoring system in this paper, and the monitoring system can realize the real-time, continuous, and long-term dynamic monitoring on shaft linings. Based on the concrete strength failure criterion under biaxial compression and the analytical solution for spatially axisymmetric problem of thick-wall cylinders, the damage limit of the shaft lining in Xieqiao coal mine is obtained. Then, we choose three sections as the test area according to the typical damage forms of shaft linings to carry out the monitoring scheme on the auxiliary shaft in Xieqiao coal mine. The monitoring results show that the extreme value of the shaft lining deformation is 2.369 mm. And the shaft lining located in the border between the floor aquifer and the bedrock generates the most severe deformation, which is about 89.4% of the deformation limit. The shaft lining deformation increment fluctuates in certain range, which belongs to elastic deformation. Finally, we inverse the stress state according to the deformation value of the shaft lining, and the obtained additional stress is found to be lower than the ultimate compressive strength. Long-term project practice confirms that the deformation monitoring results can reflect the real stress condition of the shaft lining and that the monitoring system can realize the real-time dynamic evaluation for the status of the shaft lining.


2013 ◽  
Vol 347-350 ◽  
pp. 628-633
Author(s):  
Kai Hua Xu ◽  
Di Zhang ◽  
Yu Hua Liu ◽  
Ke Xu ◽  
Yuan Hao Xi

One monitoring Terminal system based on STM32 is introduced in this paper. The system used STM32 as core controller, GPIO and USART as control and communication channel. GPS, GPRS, wired transmission and power section together makes up the system motherboard. The design has been tested and been applied in geology disaster monitoring. Results show that it is adapted to the harsh environment outdoors and long term working conditions.


2020 ◽  
Author(s):  
Lingxiao Wang ◽  
Lin Zhao ◽  
Huayun Zhou ◽  
Shibo Liu ◽  
Xiaodong Huang ◽  
...  

<p>Qinghai-Tibet Plateau (QTP) has the largest high-altitude permafrost zone in the middle and low latitudes. Substantial hydrologic changes have been observed in the Yangtze River source region and adjacent areas in the early 21st century. Permafrost on the QTP has undergone degradation under global warming. The ground leveling observation site near Tangula (33°04′N, 91°56′E) located in the degraded alpine meadow indicates that the ground has subsided 50mm since 2011. The contribution of permafrost degradation and loss of ground ice to the hydrologic changes is however still lacking. This study monitors the permafrost changes by applying the Small BAseline Subset InSAR (SBAS-InSAR) technique using C-band Sentinel-1 datasets during 2014-2019. The ground deformation over permafrost terrain is derived in spatial and temporal scale, which reflects the seasonal freeze-thaw cycle in the active layer and long-term thawing of ground ice beneath the active layer. Results show the seasonal thaw displacement exhibits a strong correlation with surficial geology contacts. The ground leveling data is used to validate the ground deformation monitoring results. Then, the ground deformation characteristics are analyzed against the landscape units. Last, the long-term inter-annual displacement value is used to estimate the water equivalent of ground ice melting.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yang Han ◽  
Shikun Pu ◽  
Lei Gao ◽  
Jianli Duan ◽  
Erbing Li

The displacement of the cross section directly reflects the stress state and stability of the surrounding rock and structure, so the monitoring of it is essential during the construction and operation of the tunnel and underground engineering, particularly under the conditions of earthquake and other geological disasters. This paper introduces a new contact tunnel profile monitoring system (TPMS) in detail that uses a tilt sensor and a displacement sensor as data acquisition devices. According to the relation between the sensing physical quantity and displacement change, the displacement calculation formulas of the tunnel cross section measuring points based on the two-dimensional plane coordinate system were deduced, and in order to eliminate the actual installation and positioning deviation of the monitoring system, the method of obtaining the optimal monitoring plane and converting coordinates of the measuring points was proposed, thus establishing the theoretical basis for the application of the TPMS. With the Beishan exploration tunnel (BET) in China as the test platform, the TPMS was successfully applied for long-term monitoring. The application experience showed that the TPMS can realize continuous monitoring, automatic collection and transmission of the monitoring data, remote access whenever necessary, without affecting the transportation in the tunnel, and high accuracy, which reaches 0.01 mm. This system provides a new simple and effective method with good generality and applicability for the deformation monitoring of the tunnel and underground engineering.


Measurement ◽  
2020 ◽  
Vol 165 ◽  
pp. 108124 ◽  
Author(s):  
Aleksandra Grzesiek ◽  
Radosław Zimroz ◽  
Pawel Śliwiński ◽  
Norbert Gomolla ◽  
Agnieszka Wyłomańska

2018 ◽  
Vol 245 ◽  
pp. 01002 ◽  
Author(s):  
Vladimir Badenko ◽  
Dmitry Volgin ◽  
Sergey Lytkin

Laser scanning is an essential method for monitoring of the operation of buildings or structures. It involves creating as-is BIM from point clouds obtained from laser scanning. In this article we present our workflow for the generation of information model from 3D point clouds of concrete tetrapod blocks on navigable structure C-1. Point cloud processing method for making informational model for long term monitoring is described. As a result of the research BIM model with each tetrapod was created for deformational monitoring in the comparison with next year model. Finally, we identify and discuss technology gaps that need to be addressed in future research.


2017 ◽  
Vol 21 (3) ◽  
pp. 825-847 ◽  
Author(s):  
Xiangjie Kong ◽  
Ximeng Song ◽  
Feng Xia ◽  
Haochen Guo ◽  
Jinzhong Wang ◽  
...  

2019 ◽  
Author(s):  
Patrícia Maia ◽  
Wagner Meira Jr. ◽  
Breno Barbosa ◽  
Gustavo Cruz

Government purchases are the usual instrument for public acquisition of goods and services. Despite extensive legislation and several control and auditing mechanisms, frauds are still diverse and commonplace at all levels of public administration. This work proposes a methodology for detecting anomalies in government purchases. The methodology promotes several levels of filtering with respect to entities involved and purchases considered as fraudulent considering diverse criteria. The applicability and effectiveness of the methodology is demonstrated through a case study using real data where we were able to identify a long term provider collusion.


Sign in / Sign up

Export Citation Format

Share Document