Seismic behavior of square spiral-confined high-strength concrete-filled steel tube columns under high axial load ratio

2021 ◽  
pp. 113600
Author(s):  
Hong-Song Hu ◽  
Zhen-Xin Chen ◽  
Hao-Zuo Wang ◽  
Zi-Xiong Guo
2013 ◽  
Vol 353-356 ◽  
pp. 3382-3386 ◽  
Author(s):  
Hua Jing Zhao ◽  
Xing Wen Liang ◽  
Can Song

Considering high compressive strength of high-strength concrete, it is assumed that concrete compressive stress of the cross-section compression zone is linear distribution when the cross-section of high-strength concrete shear wall reaches yield situation. Based on the plane section assumption, the yield curvature formula of shear wall section is obtained by using moment - curvature analysis method. The parameters effecting yield curvature of high-strength concrete shear wall are studied by using the yield curvature formula. The results show that longitudinal reinforced yield strain is the most influencing factor of the yield curvature in addition to axial load ratio. This paper presents yield curvature formula considering the impact of axial load ratio and boundary reinforcement yield stress through the regression analysis of calculation results. On this basis, the vertex yield displacement formula of high-strength concrete shear wall is proposed, and the calculation results of formula correspond to the vertex yield displacement experimental values of the 12 high-strength concrete cantilever wall well.


2019 ◽  
Vol 23 (4) ◽  
pp. 794-809
Author(s):  
Yong Yang ◽  
Xing Du ◽  
Yunlong Yu ◽  
Yongpu Pan

The ultra-high-strength concrete-encased concrete-filled steel tube column consists of a concrete-filled steel tube core and a rectangle-shaped reinforced concrete encasement. This article presents the seismic performance analysis of ultra-high-strength concrete-encased concrete-filled steel tube columns subjected to cyclic loading. Based on the measured load-lateral displacement hysteresis curves of six ultra-high-strength concrete-encased concrete-filled steel tube columns and two conventional RC columns, the seismic behaviours, such as the ductility, energy dissipation, stiffness and load-bearing capacity, were analysed. The effects of the arrangement of the stirrups and the layout of the prestressed steel strips on the seismic performance of the composite columns were critically examined. The test results indicated that the ductility and energy dissipation performance of the ultra-high-strength concrete-encased concrete-filled steel tube columns were increased by 74.8% and 162.7%, respectively, compared with the conventional columns. The configuration of the prestressed steel strip increased the ductility of the composite column by 28.9%–63% and increased the energy consumption performance by 160.2%–263.3%. By reducing the stirrup spacing and using prestressed steel strips, the concrete-filled steel tube core columns could be effectively confined, leading to a great enhancement in ductility, energy dissipation, stiffness and load-bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document