An Enhanced Kinetics and Ultra-Stable Zinc Electrode by Functionalized Boron Nitride Intermediate Layer Engineering

Author(s):  
Minghui Qiu ◽  
Hao Jia ◽  
Chuntao Lan ◽  
Hongqi Liu ◽  
Shaohai Fu
Author(s):  
X. Qiu ◽  
A. K. Datye ◽  
T. T. Borek ◽  
R. T. Paine

Boron nitride derived from polymer precursors is of great interest for applications such as fibers, coatings and novel forms such as aerogels. The BN is prepared by the polymerization of functionalized borazine and thermal treatment in nitrogen at 1200°C. The BN powders obtained by this route are invariably trubostratic wherein the sheets of hexagonal BN are randomly oriented to yield the so-called turbostratic modification. Fib 1a and 1b show images of BN powder with the corresponding diffraction pattern in fig. 1c. The (0002) reflection from BN is seen as a diffuse ring with occational spots that come from crystals of BN such as those shown in fig. 1b. The (0002) lattice fringes of BN seen in these powders are the most characteristic indication of the crystallinity of the BN.


Author(s):  
D. L. Medlin ◽  
T. A. Friedmann ◽  
P. B. Mirkarimi ◽  
M. J. Mills ◽  
K. F. McCarty

The allotropes of boron nitride include two sp2-bonded phases with hexagonal and rhombohedral structures (hBN and rBN) and two sp3-bonded phases with cubic (zincblende) and hexagonal (wurtzitic) structures (cBN and wBN) (Fig. 1). Although cBN is synthesized in bulk form by conversion of hBN at high temperatures and pressures, low-pressure synthesis of cBN as a thin film is more difficult and succeeds only when the growing film is simultaneously irradiated with a high flux of ions. Only sp2-bonded material, which generally has a disordered, turbostratic microstructure (tBN), will form in the absence of ion-irradiation. The mechanistic role of the irradiation is not well understood, but recent work suggests that ion-induced compressive film stress may induce the transformation to cBN.Typically, BN films are deposited at temperatures less than 1000°C, a regime for which the structure of the sp2-bonded precursor material dictates the phase and microstructure of the material that forms from conventional (bulk) high pressure treatment.


Author(s):  
O. Eibl ◽  
G. Gieres ◽  
H. Behner

The microstructure of high-Tc YBa2Cu3O7-X thin films deposited by DC-sputtering on SrTiO3 substrates was analysed by TEM. Films were either (i) deposited in the amorphous state at substrate temperatures < 450°C and crystallised by a heat treatment at 900°C (process 1) or (ii) deposited at around 740°C in the crystalline state (process 2). Cross sections were prepared for TEM analyses and are especially useful for studying film substrate interdiffusion (fig.1). Films deposited in process 1 were polycristalline and the grain size was approximately 200 nm. Films were porous and the size of voids was approximately 100 nm. Between the SrTiO3 substrate and the YBa2Cu3Ox film a densly grown crystalline intermediate layer approximately 150 nm thick covered the SrTiO3 substrate. EDX microanalyses showed that the layer consisted of Sr, Ba and Ti, however, did not contain Y and Cu. Crystallites of the layer were carefully tilted in the microscope and diffraction patterns were obtained in five different poles for every crystallite. These patterns were consistent with the phase (Ba1-XSrx)2TiO4. The intermediate layer was most likely formed during the annealing at 900°C. Its formation can be understood as a diffusion of Ba from the amorphously deposited film into the substrate and diffusion of Sr from the substrate into the film. Between the intermediate layer and the surface of the film the film consisted of YBa2Cu3O7-x grains. Films prepared in process 1 had Tc(R=0) close to 90 K, however, critical currents were as low as jc = 104A/cm2 at 77 K.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


2001 ◽  
Vol 25 (4−2) ◽  
pp. 767-770 ◽  
Author(s):  
T. Daibou ◽  
M. Oogane ◽  
Y. Ando ◽  
C. Kim ◽  
O. Song ◽  
...  

2018 ◽  
Author(s):  
Ravi Shankar ◽  
Sofia Marchesini ◽  
Camille Petit

Porous boron nitride is gaining significant attention for applications in molecular separations, photocatalysis, and drug delivery. All these areas call for a high degree of stability (or a controlled stability) over a range of chemical environments, and particularly under humid conditions. The hydrolytic stability of the various forms of boron nitride, including porous boron nitride, has been sparingly addressed in the literature. Here, we map the physical-chemical properties of the material to its hydrolytic stability for a range of conditions. Using analytical, imaging and spectroscopic techniques, we identify the links between the hydrolytic instability of porous boron nitride and its limited crystallinity, high porosity as well as the presence of oxygen atoms. To address this instability issue, we demonstrate that subjecting the material to a thermal treatment leads to the formation of crystalline domains of h-BN exhibiting a hydrophobic character. The heat-treated sample exhibits enhanced hydrolytic stability, while maintaining a high porosity. This work provides an effective and simple approach to producing stable porous boron nitride structures, and will progress the implementation of the material in applications involving interfacial phenomena.<br>


Sign in / Sign up

Export Citation Format

Share Document