Microstructure of YBa2Cu3O7-x thin films deposited by dc sputtering

Author(s):  
O. Eibl ◽  
G. Gieres ◽  
H. Behner

The microstructure of high-Tc YBa2Cu3O7-X thin films deposited by DC-sputtering on SrTiO3 substrates was analysed by TEM. Films were either (i) deposited in the amorphous state at substrate temperatures < 450°C and crystallised by a heat treatment at 900°C (process 1) or (ii) deposited at around 740°C in the crystalline state (process 2). Cross sections were prepared for TEM analyses and are especially useful for studying film substrate interdiffusion (fig.1). Films deposited in process 1 were polycristalline and the grain size was approximately 200 nm. Films were porous and the size of voids was approximately 100 nm. Between the SrTiO3 substrate and the YBa2Cu3Ox film a densly grown crystalline intermediate layer approximately 150 nm thick covered the SrTiO3 substrate. EDX microanalyses showed that the layer consisted of Sr, Ba and Ti, however, did not contain Y and Cu. Crystallites of the layer were carefully tilted in the microscope and diffraction patterns were obtained in five different poles for every crystallite. These patterns were consistent with the phase (Ba1-XSrx)2TiO4. The intermediate layer was most likely formed during the annealing at 900°C. Its formation can be understood as a diffusion of Ba from the amorphously deposited film into the substrate and diffusion of Sr from the substrate into the film. Between the intermediate layer and the surface of the film the film consisted of YBa2Cu3O7-x grains. Films prepared in process 1 had Tc(R=0) close to 90 K, however, critical currents were as low as jc = 104A/cm2 at 77 K.

2000 ◽  
Vol 654 ◽  
Author(s):  
W. Tian ◽  
M. K. Lee ◽  
C. B. Eom ◽  
X. Q. Pan

AbstractBaRuO3 thin films were grown on (111) SrTiO3substrate by 90° off-axis rf-sputtering. Transmission electron microscopy studies revealed that the films consist of the metastable 4H hexagonal polymorph of BaRuO3 along with few defects. The films are c-axis oriented, single crystalline with the in-plane orientation relationship with respect to the SrTiO3substrate of [112 0] BaRuO3 // [110] SrTiO3. High-resolution transmission electron microscopy (HRTEM) studies of the film-substrate interface revealed the existence of a thin intermediate layer of the 9R hexagonal polymorph of BaRuO3 between the (111) SrTiO3 substrate and the 4H film. The formation mechanism for the intermediate layer is not fully understood though. Through the combination of HRTEM and quantitative image simulations, the atomic structure of the interface between the 9R intermediate layer and the underneath (111) SrTiO3 was constructed. Three initial growth modes were observed, each of them adopting the local continuity of the oxygen octahedral sublattice across the interface.


2013 ◽  
Vol 774-776 ◽  
pp. 935-939
Author(s):  
Zhi Yong Xu ◽  
Zhong Wen Lan ◽  
Ke Sun ◽  
Zhong Yu ◽  
Rong Di Guo ◽  
...  

M-type Ba-hexaferrite (BaM) thin films with two different structures (single layered and double layered) were deposited on (001) Al2O3 substrates by RF magnetron sputtering. The changes in microstructural and magnetic properties of the films corresponding to different layer structures and substrate temperatures (Ts) were investigated. Experimental results indicated that for the single layered films deposited directly on substrates at Ts = 300 °C and Ts = 500 °C, most of the grains are acicular type grains with their c-axis in-plane and/or randomly oriented. However, in the double layered film with first interfacial layer deposited at Ts = 300 °C and second layer deposited at Ts = 500 °C, good crystallographic characteristics and excellent perpendicular c-axis orientation were obtained. The c-axis dispersion angle (Δθc) decreased to 0.49°, while the squareness ratio and coercivity of the out-of-plane respectively increased to 0.85 and 4.67 kOe in the double layered film. The mechanism for improving perpendicular c-axis orientation with the interfacial BaM layer was attributed to an increase in the perpendicularly oriented nucleation sites and the release of the stress that comes from the film-substrate interface.


1994 ◽  
Vol 343 ◽  
Author(s):  
A. L. Stepanov ◽  
R. I. Khaibullin ◽  
S. N. Abdullin ◽  
Yu. N. Osin ◽  
I. B. Khaibullin

ABSTRACTThe structure and phase composition of thin films formed by 40 KeV cobalt ion implantation into organic substrate (polyester) were studied by transmission electron microscopy in conjunction with electron diffraction. Varying current density and dose implantation over the range 0.3×1016 – 2.4×1017 cm-2 we obtained island-like cobalt films of different type as well as labyrinth-like structure at the highest dose value. The granulometric and morphologic parameters were derived from the micrographs of the investigated films. Both amorphous state and α-Co crystalline lattice of cobalt granules were established from electron diffraction patterns of synthesized films. Along with discontinuous films, we formed monocrystalline plates of α-phase cobalt under the determined implantation regimes and conditions. Cross-section images of synthesized films showed that films are of about 300 Å thick and buried at the depth of 150 Å from the principal surface of the polyester.


1992 ◽  
Vol 270 ◽  
Author(s):  
C. S. Yoo ◽  
W. J. Nellis ◽  
M. L. Sattler ◽  
R. G. Musket ◽  
N. Hinsey ◽  
...  

ABSTRACTC60 molecules have been studied at both shock and static high pressures. Under shock compressions C60 fullerenes are stable into the 13-17 GPa pressure range. The onset of a fast (∼0.5 μs) reconstructive transformation to graphite occurs near 17 GPa. The graphite recovered from 27 GPa and about 900 K is relatively well ordered with La = 100 Å. Above 50 GPa a continuous transformationto an amorphous state is observed in recovered specimens. A transparent, metastable carbon phase was recovered from thin films of C60, shocked to 69 GPa and 2200 K and then rapidly quenched to 1000 K. The selected area diffraction patterns indicate thatthe metastable carbon contains an amorphous diamond and n-diamond. Under hydrostatic compressions C60 molecules transform reversibly to a semi-transparent phase in the pressure range of 15-25 GPa with a large pressure hysteresis. The high pressure phaseconsists of interconnected strongly interacting C60 agglomerates, or networksof fullerenes, whose stability continuously increases with increase of pressure. Above 27 GPa the transition becomes irreversible, and the material recovered from high pressureis metastable and diamond-like at ambient conditions. These pressure-induced transitions are explained in terms of nr-electron rehybridization between C60 molecules, which occurs at substantially decreased intermolecular distances.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Fang-Hsing Wang ◽  
Jen-Chi Chao ◽  
Han-Wen Liu ◽  
Tsung-Kuei Kang

Transparent conducting titanium-doped zinc oxide (TZO) thin films were prepared on glass substrates by RF magnetron sputtering using 1.5 wt% TiO2-doped ZnO as the target. Electrical, structural, and optical properties of films were investigated as a function of H2/(Ar + H2) flow ratios (RH) and substrate temperatures (TS). The optimalRHvalue for achieving high conducting TZO:H thin film decreased from 10% to 1% whenTSincreased from RT to 300°C. The lowest resistivity of9.2×10-4 Ω-cm was obtained asTS=100°C andRH=7.5%. X-ray diffraction patterns showed that all of TZO:H films had a hexagonal wurtzite structure with a preferred orientation in the (002) direction. Atomic force microscopy analysis revealed that the film surface roughness increased with increasingRH. The average visible transmittance decreased with increasingRHfor the RT-deposited film, while it had not considerably changed with differentRHfor the 300°C-deposited films. The optical bandgap increased asRHincreased, which is consistent with the Burstein-Moss effect. The figure of merits indicated thatTS=100°C andRH=7.5% were optimal conditions for TZO thin films as transparent conducting electrode applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Yuan-Tsung Chen ◽  
S. M. Xie

C40Fe40B20was deposited on a glass substrate to a thickness (tf) of between 100 Å and 500 Å. X-ray diffraction patterns (XRD) indicate thatC40Fe40B20films are in an amorphous state. The plane-view microstructures and grain size distributions of CoFeB thin films are observed under a high-resolution transmission electron microscope (HRTEM). The thicker CoFeB films have larger grain size distribution than thinner CoFeB films. The saturation magnetization (Ms) exhibits a size effect, meaning thatMsincreases astfincreases. The magnetic remanence magnetization (Mr) of CoFeB thin films are sensitive to thinner CoFeB films, and the refined grain size of thinner CoFeB films can induce ferromagnetic stronger spin exchange-coupling behavior than thicker CoFeB films, resulting in higher remanence. The highest magnetic squareness ratio (Mr/Ms) of the CoFeB films occurs at thickness of 100 Å, suggesting the 100 Å of the as-deposited CoFeB film is suitable for magnetic memory application. These results also demonstrate that coercivity (Hc) is increased by an increase in the width of the distribution of grain sizes. The electrical resistivity (ρ) of such a film is typically higher than normally exceeding 100 μΩ cm, revealing that the amorphous phase dominates. These results are consistent with the XRD results.


1995 ◽  
Vol 385 ◽  
Author(s):  
M. Grant Norton ◽  
Wenbiao Jiang ◽  
J. Thomas Dickinson

ABSTRACTThin films of polytetrafluoroethylene have been formed by the pulsed-laser deposition technique. The structure of the films was found to be dependent upon the substrate temperature during deposition. At substrate temperatures from room temperature to 200°C the films were determined, by transmission electron microscopy and X-ray diffraction techniques, to be amorphous. Films formed at higher substrate temperatures were found to contain both amorphous and crystalline components. The data for the crystalline component is consistent with it being highly ordered with the long helical molecular chains aligned parallel to the film-substrate interface plane. The maximum amount of crystalline material occurred when the substrate temperature was close to the melting temperature of the polymer.


2013 ◽  
Vol 750 ◽  
pp. 1-6
Author(s):  
Z.M. Sun ◽  
Tsutomu Sonoda ◽  
Hitoshi Hashimoto ◽  
Akihiro Matsumoto

Multiple target magnetron sputtering technique was employed for the deposition of (Cr,V)2AlC thin films, on the substrate of Si wafer at temperatures ranging from ambient to 840 K. The chemical composition and crystal structure of the deposited thin films were analyzed, surfaces as well the cross sections observed. The experimental results demonstrated that the temperature of the substrate does not affect the chemical composition of the deposited thin films. Deposition at room temperature or moderate elevated temperatures was found to result in amorphous films, whereas crystalline MAX phase thin films were obtained at high temperature. The transition of the substrate temperature was found to be around 743 K. The thin films deposited at temperatures below the transition showed the featureless flat surfaces. At high substrate temperatures, crystalline MAX thin films were formed. When deposited at temperatures near the transition, amorphous/nanocrystalline double layer thin films were deposited.


Author(s):  
D.C. Dufner

The general goal of this research is to clarify mechanisms of solid state reactions at the atomic level as a step in the rationalization of macroscopic reaction behavior in solids. A study of intermetallic alloy formation resulting from interdiffusion of metals in thin films can be made by HREM. In this work, reactions between Pt and Sn in thin films are studied to elucidate mechanisms for structural and compositional changes during the interdiffusion process.Thin films of Pt and Sn used in this study were prepared by the two-film method introduced by Shiojiri. Few hundred angstroms of Pt were vacuum-deposited onto holey carbon films mounted on TEM grids. Sn films with an average thickness of 200Å were created by evaporation at rates of 15-30 Å/sec onto air-cleaved KBr substrates. The Sn films were wet-stripped and collected on the holey Pt grids. Figure 1 shows a cross-section schematic of a Pt-Sn couple. While this two-film arrangement did not allow observations of the actual reaction interface, microtomy was used to produce cross-sections.


Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


Sign in / Sign up

Export Citation Format

Share Document