scholarly journals Hydraulic conductivity and geophysics (ERT) to assess the aquifer recharge capacity of an inland wetland in the Brazilian Savanna

2021 ◽  
Vol 5 ◽  
pp. 100274
Author(s):  
César Augusto Moreira ◽  
Vania Rosolen ◽  
Lucas Moreira Furlan ◽  
Renata Cristina Bovi ◽  
Henri Masquelin
2013 ◽  
Vol 146 ◽  
pp. 8-15 ◽  
Author(s):  
Jeffrey Lewis ◽  
Jan Burman ◽  
Christina Edlund ◽  
Louise Simonsson ◽  
Rune Berglind ◽  
...  

Author(s):  
Nishi Verma ◽  
Martin Anda ◽  
Yureana Wijayanti

<strong>Aim: </strong>This study investigates the development of a sustainable groundwater management strategy in Yogyakarta province through groundwater recharge technologies. This study also compares technologies used in the province and the one already implemented in Perth due to its similar nature in site geology and hydrogeology. <strong>Methodology and Results: </strong>Primary and secondary data were collected and analyzed. Water depth and hydraulic conductivity data were analyzed using permeameter and GIS program. GIS image analysis of water depth and hydraulic conductivity suggested that the placement of potential aquifer recharge sites would be best suited in the north-east part of the province, slightly outside the study area, to provide water for all. Two recharge schemes of an infiltration basin and an injection well with storm water detention tank were proposed. The injection well was decided upon, despite its higher cost, due to the impermeability of soils in Yogyakarta and possible water seepage to the environment. Similar to Perth’s Hartfield park scheme, an injection well would directly bypass these soil layers to recharge the aquifers with rainwater and storm water. Hartfield Park injects 4400 kL of water/year. <strong>Conclusion, significance and impact study: </strong>The findings of this study indicate aquifer recharge is a possible solution to overcome Yogyakarta’s high abstraction. Further studies recommend that injection well trials are further developed in terms of location, depth and sizing.


2020 ◽  
Author(s):  
Roger Clavera-Gispert ◽  
Aaron Micallef

&lt;p&gt;Groundwater has been implicated as an important geomorphic agent in landscape evolution. The link between groundwater seepage and landscape evolution remains controversial and poorly quantified, however. Groundwater weathering and erosion processes have not been quantified in terms of mechanisms, rates or resulting morphologies. Experimental and numerical analyses of these processes have been based on simplistic assumptions about flow processes and hydraulic characteristics. There is also a paucity of process-based observations and detailed instrumental studies of seepage erosion and weathering due to the long timescales involved and the complexity of the process. Numerical modelling, in particular Landscape Evolution Modelling (LEM), is a valuable tool that can allow us to better understand the spatial and temporal evolution of landscapes by groundwater seepage, particularly when integrated with field data.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Here we report preliminary results from a study focusing on the Canterbury coast of the South Island, New Zealand. The study area, located between the Ashburton and Rakaia Rivers, comprises a 20 m high coastal cliff of sandy gravels with isolated sand bodies that features a series of box canyons. Field visits carried out in 2017 and 2019 allowed us to characterise the geological framework of the area and monitor the formation and evolution of box canyons by groundwater seepage. We used Landlab, an open source framework written in python, to build a LEM for the study area.&amp;#160; The code includes a simplified groundwater model using the Dupuit approximation, the calculation of the drainage area, as well as erosion processes using diffusion and a power law functions.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The model computes the evolution of the coastal landscape during 1 year. The initial topography is obtained from a 1x1m DEM and the initial conditions are derived from the fieldwork. Several examples have been run using different aquifer recharge rates and hydraulic conductivity. The results suggest that the factor that controls the inception erosion is the spatial variability in permeability and initial topography, whereas the evolution of the canyon is controlled by the seepage flow, which depends on the hydraulic conductivity and the erosivity of the sediments.&lt;/p&gt;


2019 ◽  
Vol 25 (6) ◽  
pp. 841-846
Author(s):  
Heonseop Eom ◽  
Sami Flimban ◽  
Anup Gurung ◽  
Heejun Suk ◽  
Yongcheol Kim ◽  
...  

Managed aquifer recharge (MAR), an intentional storage of excess water to an aquifer, is becoming a promising water resource management tool to cope with the worldwide water shortage. Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and overall performance in MAR. The current study investigates the impact of carbon and nitrogen in recharge water on bioclogging in MAR. For this investigation, continuous-flow columns packed with sand grains were operated with influents having 0 (C1), 5 (C2), and 100 mg/L (C3) of glucose with or without introduction of nitrate. Hydraulic conductivity was analyzed to evaluate bioclogging in the systems. In C1 and C2, hydraulic conductivity was not significantly changed overall. However, hydraulic conductivity in C3 was decreased by 28.5% after three weeks of operation, which appears to be attributed to generation of fermentation bacteria. Introduction of nitrogen to C3 led to a further decrease in hydraulic conductivity by 25.7% compared to before it was added, most likely due to stimulation of denitrifying bacteria. These findings indicate that high carbon contents and introduction of additional nitrogen in recharge water cause serious bioclogging in MAR, suggesting the necessity for controlling quality of recharge water.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2575
Author(s):  
Joanne L. Vanderzalm ◽  
Declan W. Page ◽  
Karen E. Barry ◽  
Dennis Gonzalez

Managed aquifer recharge (MAR) is the intentional recharge of water to suitable aquifers for subsequent beneficial use or to achieve environmental benefits. Well injection techniques for MAR, such as Aquifer Storage and Recovery (ASR), rely on implementing appropriate design and defining the operational parameters to minimise well clogging and maintain sustainable rates of recharge over the long term. The purpose of this study was to develop water quality targets and pre-treatment requirements for recycled water to allow sustained recharge and recovery in a medium-coarse siliceous aquifer. The recharge water is a blend of 40% Class A recycled water and 60% reverse osmosis (RO)-treated Class A recycled water. Four source waters for MAR were evaluated: (1) this blend with no further treatment, and this blend with additional treatment using: (2) a 20 µm sediment cartridge filter, (3) a 5 µm sediment cartridge filter, or (4) a 5 µm granular activated carbon (GAC) cartridge filter. All four treatment options were also further disinfected with chlorine. The four blended and treated recycled waters were used in laboratory columns packed with aquifer material under saturated conditions at constant temperature (20.7 °C) with light excluded for up to 42 days. Substantial differences in the changes in hydraulic conductivity of the columns were observed for the different treatments within 14 days of the experiment, despite low turbidity (<2 NTU) of the blend waters. After 14 days, the GAC-treated water had a 7% decline in hydraulic conductivity, which was very different from the other three blend waters, which had declines of 39–52%. Based on these results and consistent with previous studies, a target biodegradable dissolved organic carbon (BDOC) level of <0.2 mg/L was recommended to ensure a biologically stable source of water to reduce clogging during recharge.


Sign in / Sign up

Export Citation Format

Share Document