Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie

2010 ◽  
Vol 67 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Jie Qiu ◽  
Yuguang Bai ◽  
Yong-Bi Fu ◽  
John F. Wilmshurst
2010 ◽  
Vol 20 (3) ◽  
pp. 153-161
Author(s):  
Jie Qiu ◽  
Yuguang Bai ◽  
Yong-Bi Fu ◽  
John F. Wilmshurst

AbstractTiming of seed germination influences plant lifetime fitness and can affect the ability of plant populations to colonize and persist in changing environments. However, the genetic variation of the seed germination response remains poorly understood. The amplified restriction fragment polymorphism (AFLP) technique was applied to characterize the genetic variation of germinated seeds collected from three Festuca hallii populations in the Canadian prairie. Three subpopulations with early, intermediate and late germination were identified from each population, based on germination tests at 10, 15 and 20°C in controlled growth chambers. Three AFLP primer pairs were employed to screen a total of 540 assayed seedling samples and 188 polymorphic AFLP bands were scored for each sample. None of the assayed AFLP bands were significantly associated with seed germination, but marked differences in estimates of mean band frequency were observed for various groups of germinating seeds under different test temperatures. Partitioning of the total AFLP variation showed that 5.9% AFLP variation was present among seeds of the three populations, 0.3% among seeds of three germination subpopulations, and 0.5% among seeds grouped for germination temperature. Genetic differentiation was significant among 27 groups of seeds representing population, germination timing and test temperature. Subpopulations with early and intermediate germination shared similar genetic backgrounds and were genetically differentiated from the late germination subpopulation. These results indicate that seed genotypes respond slightly differently to environmental variation, resulting in significant but weak genetic differentiation in the germination of F. hallii seeds. Implications for plant establishment and fescue restoration are discussed.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Jodie S. Holt ◽  
Deborah R. Orcutt

Experiments were conducted to establish low temperature thresholds for initiation of bud sprouting in dormant vegetative propagules of johnsongrass, purple nutsedge, and yellow nutsedge, and seed germination in cotton. Weed propagule sprouting and cotton seed germination responses to temperature were determined in a series of experiments conducted on a temperature gradient bar. Four calculated indices were used to quantify germination: mean percent germination per day, reciprocal median response time, and two versions of germination rate index. Data were analyzed as a series of regressions of germination indices against temperature. Maximum and minimum temperatures for germination were derived directly from the regressions and compared among species. Yellow nutsedge had the lowest temperature threshold (6 C), while the other species had low temperature thresholds of 11 to 12 C. Upper temperature thresholds were similar among species and ranged from 42 to 44 C. The lower low temperature threshold of yellow nutsedge sprouting compared to those for cotton, johnsongrass, and purple nutsedge suggests that early establishment by yellow nutsedge is an important factor in competitiveness in mixtures of these species. The results presented here suggest that application of principles derived from studies in seed biology might advance our understanding and ability to manage perennial weeds.


2021 ◽  
Vol 43 ◽  
Author(s):  
Joana Paula Bispo Nascimento ◽  
Bárbara França Dantas ◽  
Marcos Vinicius Meiado

Abstract: This study evaluates the effects of hydration and dehydration cycles (HD cycles) on seed germination of four Caatinga tree species (Anadenanthera colubrina var. cebil, Enterolobium contortisiliquum, Pityrocarpa moniliformis and Pterogyne nitens) subjected to different temperatures and determine the thermal upper and lower limits of germination. For this, seeds were subjected to 0, 1, 2 and 3 HD cycles and set to germinate at temperatures of 5, 10, 15, 25, 35, 40 and 45 °C. Germinability and t50 were calculated and the differences of these parameters were compared by two-way ANOVA. In addition, germination rate (GR = 1/t50), as well as ceiling (Tc), optimum (To) and base (Tb) temperatures were calculated to estimate the limits below or above which the seeds fail to germinate. We observed that the more HD cycles, the better the seed responds, especially at extreme temperatures. Seeds of all studied species showed To between 25 and 35 °C, Tb < 10 °C, and Tc > 40 °C. The slope of regression curves for germination rate showed that submitting seeds to HD cycles expands its thermal tolerance range, revealing that this seed pre-treatment can be efficient for species as it increases their tolerance to thermal stress.


1991 ◽  
Vol 83 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Yohji Esashi ◽  
Shinichi Matsuyama ◽  
Hiroki Ashino ◽  
Maria Ogasawara ◽  
Ryo Hasegawa

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Soleymanifard ◽  
R Naseri ◽  
A Mirzaei ◽  
H Naserirad

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
YA Jeon ◽  
HS Lee ◽  
ES Park ◽  
YY Lee ◽  
JS Sung ◽  
...  

2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


Sign in / Sign up

Export Citation Format

Share Document