scholarly journals Glyphosate damages blood-testis barrier via NOX1-triggered oxidative stress in rats: Long-term exposure as a potential risk for male reproductive health

2022 ◽  
Vol 159 ◽  
pp. 107038
Author(s):  
Jing-Bo Liu ◽  
Zi-Fa Li ◽  
Lu Lu ◽  
Zhen-Yong Wang ◽  
Lin Wang
2014 ◽  
Vol 16 (1) ◽  
pp. 31 ◽  
Author(s):  
RobertJ Aitken ◽  
TeganB Smith ◽  
MatthewS Jobling ◽  
MarkA Baker ◽  
GeoffryN De Iuliis

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1365 ◽  
Author(s):  
Sara C. Pereira ◽  
Pedro F. Oliveira ◽  
Sónia Rodrigues Oliveira ◽  
Maria de Lourdes Pereira ◽  
Marco G. Alves

Male reproductive tissues are strongly susceptible to several environmental and lifestyle stressors. In general, male reproductive health is highly sensitive to oxidative stress, which results in reversible and/or irreversible changes in testosterone-producing cells, spermatogenesis, and sperm quality. Chromium compounds are widely used in the +3 and +6 valence states, as food supplements, and in the industrial field, respectively. Chromium (III) compounds, i.e., Cr(III)-tris-picolinate, [Cr(pic)3], known as chromium picolinate, are used as nutritional supplements for the control of diabetes, body weight, and muscular growth. However, previous studies showed that animal models exposed to chromium picolinate experienced degenerative changes in spermatogenesis. Contradictory results are documented in the literature and deserve discussion. Furthermore, the long-term effects of chromium picolinate on the antioxidant system of treated subjects have not been properly studied. Comprehensive studies on the role of this compound will help to establish the safe and useful use of chromium supplementation. On the other hand, chromium (VI) compounds are widely used in several industries, despite being well-known environmental pollutants (i.e., welding fumes). Chromium (VI) is known for its deleterious effects on male reproductive health as toxic, carcinogenic, and mutagenic. Previous studies have demonstrated severe lesions to mouse spermatogenesis after exposure to chromium (VI). However, workers worldwide are still exposed to hexavalent chromium, particularly in electronics and military industries. Data from the literature pinpoints mechanisms of oxidative stress induced by chromium compounds in somatic and germ cells that lead to apoptosis, thus underlining the impairment of fertility potential. In this review, we analyze the benefits and risks of chromium compounds on male fertility, as well as the mechanisms underlying (in)fertility outcomes. Although supplements with antioxidant properties may maximize male fertility, adverse effects need to be investigated and discussed.


2020 ◽  
Vol 113 (3) ◽  
pp. 489-499 ◽  
Author(s):  
Daniel E. Nassau ◽  
Kevin Y. Chu ◽  
Ruben Blachman-Braun ◽  
Miguel Castellan ◽  
Ranjith Ramasamy

Author(s):  
Annia A. Martínez-Peña ◽  
Kendrick Lee ◽  
James J. Petrik ◽  
Daniel B. Hardy ◽  
Alison C. Holloway

Abstract With the legalization of marijuana (Cannabis sativa) and increasing use during pregnancy, it is important to understand its impact on exposed offspring. Specifically, the effects of Δ-9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis, on fetal ovarian development and long-term reproductive health are not fully understood. The aim of this study was to assess the effect of prenatal exposure to Δ9-THC on ovarian health in adult rat offspring. At 6 months of age, Δ9-THC-exposed offspring had accelerated folliculogenesis with apparent follicular development arrest, but no persistent effects on circulating steroid levels. Ovaries from Δ9-THC-exposed offspring had reduced blood vessel density in association with decreased expression of the pro-angiogenic factor VEGF and its receptor VEGFR-2, as well as an increase in the anti-angiogenic factor thrombospondin 1 (TSP-1). Collectively, these data suggest that exposure to Δ9-THC during pregnancy alters follicular dynamics during postnatal life, which may have long-lasting detrimental effects on female reproductive health.


2021 ◽  
Author(s):  
Daniel E. Nassau ◽  
Jordan C. Best ◽  
Eliyahu Kresch ◽  
Daniel C Gonzalez ◽  
Kajal Khodamoradi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


Sign in / Sign up

Export Citation Format

Share Document