scholarly journals Impact of Environmental and Lifestyle Use of Chromium on Male Fertility: Focus on Antioxidant Activity and Oxidative Stress

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1365 ◽  
Author(s):  
Sara C. Pereira ◽  
Pedro F. Oliveira ◽  
Sónia Rodrigues Oliveira ◽  
Maria de Lourdes Pereira ◽  
Marco G. Alves

Male reproductive tissues are strongly susceptible to several environmental and lifestyle stressors. In general, male reproductive health is highly sensitive to oxidative stress, which results in reversible and/or irreversible changes in testosterone-producing cells, spermatogenesis, and sperm quality. Chromium compounds are widely used in the +3 and +6 valence states, as food supplements, and in the industrial field, respectively. Chromium (III) compounds, i.e., Cr(III)-tris-picolinate, [Cr(pic)3], known as chromium picolinate, are used as nutritional supplements for the control of diabetes, body weight, and muscular growth. However, previous studies showed that animal models exposed to chromium picolinate experienced degenerative changes in spermatogenesis. Contradictory results are documented in the literature and deserve discussion. Furthermore, the long-term effects of chromium picolinate on the antioxidant system of treated subjects have not been properly studied. Comprehensive studies on the role of this compound will help to establish the safe and useful use of chromium supplementation. On the other hand, chromium (VI) compounds are widely used in several industries, despite being well-known environmental pollutants (i.e., welding fumes). Chromium (VI) is known for its deleterious effects on male reproductive health as toxic, carcinogenic, and mutagenic. Previous studies have demonstrated severe lesions to mouse spermatogenesis after exposure to chromium (VI). However, workers worldwide are still exposed to hexavalent chromium, particularly in electronics and military industries. Data from the literature pinpoints mechanisms of oxidative stress induced by chromium compounds in somatic and germ cells that lead to apoptosis, thus underlining the impairment of fertility potential. In this review, we analyze the benefits and risks of chromium compounds on male fertility, as well as the mechanisms underlying (in)fertility outcomes. Although supplements with antioxidant properties may maximize male fertility, adverse effects need to be investigated and discussed.

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Tali Silberstein ◽  
Iris Har-Vardi ◽  
Avi Harlev ◽  
Michael Friger ◽  
Batel Hamou ◽  
...  

Oxidative stress is induced by reactive oxygen substances (ROS) that are known to affect male fertility. The aims of this study were to prospectively investigate and characterize total antioxidant and specifically polyphenols concentrations and their relations to sperm quality and fertility treatment success. During their infertility treatment, sixty-seven males were prospectively recruited to this study. After separation of the sperm from the semen sample, the semen fluid samples antioxidants and polyphenols concentrations were determined. Antioxidant concentration was significantly associated with sperm concentration and total motile count. Antioxidants concentration in the group of male with sperm concentration ≥ 15 × 106was significantly higher than in the group of male with antioxidants concentration < 15 × 106(830.3 ± 350 μM and 268.3 ± 220 μM, resp.,p<0.001). Polyphenols concentration did not differ between the groups of sperm concentration above and below 15 × 106(178.7 ± 121 μM and 161.7 ± 61 μM, resp.,p-NS). No difference was found between fertilization rates and antioxidants or polyphenols concentrations. This is the first study that reports on polyphenols concentration within semen fluid. More studies are needed in order to investigate polyphenols role in male fertility.


2014 ◽  
Vol 16 (1) ◽  
pp. 31 ◽  
Author(s):  
RobertJ Aitken ◽  
TeganB Smith ◽  
MatthewS Jobling ◽  
MarkA Baker ◽  
GeoffryN De Iuliis

Author(s):  
Aleksander Giwercman

Male patients referred for infertility problems are often curious as to whether their problem may be caused by environmental influences, and thus whether their chances of becoming a father can be increased by a change in lifestyle or occupation. The present level of knowledge does not allow a definitive, evidence based recommendation to be made. Except for some very few, rather extreme, occupational (e.g. 1,2-dibromo-3-chloropropane; DBCP) or iatrogenic (e.g. irradiation, cytotoxic drugs) exposures known to cause temporary or even permanent sterility, it is difficult to point to specific environmental influences as definite causes of male infertility. Nevertheless, recent research has generated some interesting information regarding the possible impact of the environment on male reproductive functions (1). This research was stimulated by reports on a possible time-related decline in male fertility (2)—a question still remaining controversial. However, there is now a considerable amount of information showing that environmental and lifestyle related exposure during early fetal development is of crucial importance for reproductive health in adult life (3).


2022 ◽  
Vol 11 (1) ◽  
pp. e43211125191
Author(s):  
Luana Nayara Gallego Adami ◽  
Valter Luiz Maciel Junior ◽  
João Diego Losano

Male infertility is one important factor among the multifactorial causes of couple infertility, being oxidative stress one of the main related sources. Sperm is a specialized cell extremely susceptible to stress. To understand and mitigate this event, many studies have used different antioxidants, orally or in vitro supplementation, trying to improve sperm quality and function. Considering the extensive available literature regarding approaches and attempts to solve male fertility issues, the aim of this review is evaluating the effects of antioxidant supplementation on sperm, in both humans and experimental models with animals. This review selected original data from PubMed. The keywords used were: antioxidant, sperm, male fertility, antioxidant supplementation, male infertility; and the term "rodents" was added to the descriptors “antioxidant” and “male fertility”. Only studies published in indexed journals, in English, between 2015 and 2019 were included. This review involves i) human sperm and ii) rodent sperm. For the human approach, the search retrieved 496 articles and 80 were included, among which 28 studies were of in vitro antioxidant supplementation, 19 involved oral antioxidant supplementation and the remaining 33 concerned quantification of oxidants and antioxidants already present in the seminal samples. For the rodent approach, 152 articles were retrieved and 52 were included: 3 of varicocele, 11 of diabetes, 10 of therapeutic drugs, 3 of physical exercise, 10 of environmental exposure and 3 of heat stress. The remaining studies involved oxidative stress status in experimental models. Antioxidants use for reproductive purposes is increasing in an attempt to achieve better gametes and embryos. Vitamins C, B and E, selenium and zinc are the most commonly used antioxidants, with remarkable evidences in improving pathophysiological seminal conditions.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1283
Author(s):  
Maria Nunzia De Luca ◽  
Marisa Colone ◽  
Riccardo Gambioli ◽  
Annarita Stringaro ◽  
Vittorio Unfer

Infertility is defined as a couple’s inability to conceive after at least one year of regular unprotected intercourse. This condition has become a global health problem affecting approximately 187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative stress is a common reason for several conditions associated with male infertility. High levels of reactive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol (MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aromatase, which produces testosterone. In this review, we analyze the processes involving oxidative stress in male fertility and the mechanisms of action of different molecules.


2021 ◽  
Author(s):  
Xinye Zhu ◽  
Chengxuan Yu ◽  
Wangshu Wu ◽  
Lei Shi ◽  
Chenyi Jiang ◽  
...  

Abstract Background: Overwhelming evidences now suggest oxidative stress is a major cause of sperm dysfunction and male infertility. Zinc is an important non-enzyme antioxidant with a wide range of biological functions and plays a significant role in preserving male fertility. Notably, zinc trafficking through the cellular and intracellular membrane is endorsed by precise families of zinc transporters, i.e. SLC39s/ZIPs and SLC30s/ZnTs. However, the expression and function of zinc transporters in the male germ cells were rarely reported. The aim of this study is to determine the crucial zinc transporter responsible for the maintenance of spermatogenesis.Methods: In the present study, we investigated the expression of all fourteen ZIP members in mouse testis and further analyzed the characteristic of ZIP12 expression in testis and spermatozoa by qRT-PCR, immunoblot and immunohistochemistry analyses. To explore the antioxidant role of ZIP12 in spermatogenesis, an obese mouse model fed with high-fat-diet was employed to confirm the correlation between ZIP12 expression level and sperm quality. Furthermore, ZIP12 expression in response to oxidative stress in a spermatogonia cell line, C18-4 cells, was determined and its function involved in regulating cell viability and apoptosis was investigated by RNAi experiment. Results: We initially found that ZIP12 expression in mouse testis was significantly high compared to other members of ZIPs and its mRNA and protein were intensively expressed in testis rather than the other tissues. Importantly, ZIP12 was intensively abundant in spermatogonia and spermatozoa, both in mice and humans. Moreover, ZIP12 expression in testis significantly decreased in obese mice, which associated with reduced sperm zinc content, excessive sperm ROS, poor sperm quality and male subfertility. Similarly, its expression in C18-4 cells significantly declined in response to oxidative stress. Additionally, reduced ZIP12 expression by RNAi associated with a decline in zinc level subsequently caused low cell viability and high cell apoptosis in C18-4 cells. Conclusions: The zinc transporter ZIP12 is intensively expressed in testis, especially in spermatogonia and spermatozoa. ZIP12 may play a key role in maintaining intracellular zinc level in spermatogonia and spermatozoa, by which it resists oxidative stress during spermatogenesis and therefore preserves male fertility.


2019 ◽  
Vol 20 (3) ◽  
pp. 27-35
Author(s):  
T. M. Sorokina ◽  
M. V. Andreeva ◽  
V. B. Chernykh ◽  
L. F. Kurilo

Varicocele is one of the most common diseases of the male reproductive system. Despite the high prevalence of this pathology, the effect of varicocele on male fertility is still a controversial issue. Opinions of experts about the possible effects of varicocele on the male reproductive health, the causes and methods of treatment are contradictory, and the experimental data obtained often show directly opposed results. This article presents a review of the literature on the effects of varicocele on the male reproductive system and fertility.


2017 ◽  
pp. 99-104
Author(s):  
V.V. Orlova ◽  
◽  
L.V. Suslikova ◽  

The prevalence of infertility, including tubal-peritoneal genesis, led to the development of assisted reproductive technology (ART) as the most effective treatment and achievement of the expected pregnancy. But the success of ART is about 40% and depends on many factors: genetic, immunological, hormonal, age, control ovarial stimulation, sperm quality, quantity and quality received oocytes and embryos and implantation ability of endometrium. Therefore, it is important to consider the mechanisms and factors behind the successful implantation. Particular attention is given to the study of disturbances of oxidative stress and apoptosis in the reproductive tract of infertile women. Under the influence of adverse factors and in pathology, as a result of reducing the cell’s ability to neutralize free radicals and active forms of oxygen, antioxidant protection is disturbed, and oxidative stress develops, which promotes the onset of apoptosis. The programmed cell death occurs in the physiological functioning of the reproductive system: follicular atresia and regression of the functional layer of the endometrium when pregnancy is not occur. However, today the negative influence of oxidative stress and violation of the regulation of apoptosis on the reproductive function, namely the success of in vitro fertilization, has been confirmed. Also, the use of ART has some of the negative effects on gametes and embryos, which is accompanied by the emergence of oxidative stress and reduces the probability of pregnancy. Melatonin is a universal hormone that plays a key role in the functioning of sex hormones and has powerful antioxidant properties. As a key antioxidant regulator As a key antioxidant regulator at the biochemical and hormonal levels, melatonin positively influences the maturation of oocytes and the preparation of the endometrium before implantation. Therefore, there is a reasonable justification for the use of melatonin during treatment with ART. Many studies are devoted to the study of the effectiveness of the use of exogenous melatonin in the treatment of infertility, but to date, the level of evidence is insufficient for use in it ART. Key words: melatonin, infertility, oxidative stress, apoptosis, ART.


Sign in / Sign up

Export Citation Format

Share Document