Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed

2017 ◽  
Vol 229 ◽  
pp. 586-594 ◽  
Author(s):  
Xiaoliang Ji ◽  
Runting Xie ◽  
Yun Hao ◽  
Jun Lu
1998 ◽  
Vol 38 (10) ◽  
pp. 207-214 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dhong Il Jung ◽  
Cho Hee Yoon

Runoff loads of pollutant in agricultural watersheds were spatially analyzed by using geographic information system(GIS) technology. The topological relationship between pollution sources in the watershed was, first of all, identified by using the developed digital map of land use and then the pollutant loads generated from each source was estimated by applying a conventional unit loading factor on the obtained digital information of pollution sources. To evaluate the loads delivered from spatially distributed pollution sources to monitoring stations in down stream via surface of watershed, a renovated empirical model incorporated with the information of pollutant discharge path was developed through introducing a digital terrain model(DTM) technique. In this model, the function of degradation of pollution loads during delivery process was simplified so that each watershed could have a basin-wide self-purification capacity which would be considered to be possessed inherently in each watershed and could retard the discharge of pollutants from sources generated to stream water. Model credibility showed good consistency with comparing the simulated values with observed data. Monte Carlo optimizing technique made it possible to estimate the basin-wide self-purification coefficients.


2013 ◽  
Vol 7 ◽  
pp. 758-761 ◽  
Author(s):  
Pierpaolo Saccon ◽  
Albrecht Leis ◽  
Alina Marca ◽  
Jan Kaiser ◽  
Laura Campisi ◽  
...  

2021 ◽  
Vol 188 ◽  
pp. 116537
Author(s):  
Raúl Carrey ◽  
Elisenda Ballesté ◽  
Anicet R. Blanch ◽  
Francisco Lucena ◽  
Pere Pons ◽  
...  

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Abdul Aziz Sankoh ◽  
Nana Sarfo Agyemang Derkyi ◽  
Ronnie A. D. Frazer-williams ◽  
Cynthia Laar ◽  
Ishmail Kamara

Owing to a lack of efficient solid waste management (SWM) systems, groundwater in most developing countries is found to be contaminated and tends to pose significant environmental health risks. This review paper proffers guidelines on the application of isotopic techniques to trace groundwater pollution sources from data spanning from 2010 to 2020 within developing countries. Earlier groundwater studies in those countries were mainly focused on using hydrochemical and geophysical techniques. The limitation of these techniques is that they can only monitor the concentration of pollutants in the water bodies and possible leachate infiltration but cannot determine the specific sources of the pollution. Stable isotopes of δ18O, δ2H and δ13C can confirm leachate migration to water bodies due to methanogenesis. The high tritium in landfill leachates is useful to identify leachate percolation in groundwater. The δ15N technique has been used to distinguish between synthetic and organic nitrogen sources but its application is limited to differentiating between atmospheric vs. inorganic nitrogen sources. The use of a dual isotope of δ15N–NO3− and δ18O–NO3− is beneficial in terms of identifying various sources of nitrogen such as atmospheric and inorganic fertilizers but is yet to be used to differentiate between nitrogen pollution sources from dumpsites, sewage and animal manure. The coupling of the 11B isotope with δ15N–NO3− and δ18O–NO3− and other hydrochemical parameters has proven to be effective in distinguishing between nitrate fertilizer, animal manure, seawater contamination and sewage. Therefore, in areas affected by agricultural activities, landfill leachates, domestic or sewage effluent and seawater intrusion, it is incumbent to couple hydrochemical (Cl−, NO3−, B, DO) and isotope techniques (δ18O, 2H, δ13C, δ18O–NO3−, δ15N–NO3−, δ11B and 3H) to effectively determine pollution sources of groundwater in developing countries. The foregoing review will provide guidelines for studies that may aim to critically distinguish between seawater intrusion, dumpsites, sewage and septic leachates.


Episodes ◽  
2020 ◽  
Vol 43 (2) ◽  
pp. 739-749
Author(s):  
Ruyu Yuan ◽  
Tianyuan Zheng ◽  
Xilai Zheng ◽  
Dongsheng Liu ◽  
Jia Xin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document