Influences of irrigation and fertilization on soil N cycle and losses from wheat–maize cropping system in northern China

2021 ◽  
Vol 278 ◽  
pp. 116852
Author(s):  
Xin Zhang ◽  
Guangmin Xiao ◽  
Roland Bol ◽  
Ligang Wang ◽  
Yuping Zhuge ◽  
...  
SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


2013 ◽  
Vol 8 (4) ◽  
pp. 29 ◽  
Author(s):  
Nunzio Fiorentino ◽  
Massimo Fagnano ◽  
Paola Adamo ◽  
Adriana Impagliazzo ◽  
Mauro Mori ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 623-676 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
T. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the center of attention in soil science research. The importance of N as a nutrient for all biota; the ever increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measurement and mitigation of the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges for future research (Fig. 1). We identified four key questions with respect to N cycling processes: 1. How large is the contribution of non-symbiotic N fixation in natural systems? 2. How important is nitrifier denitrification and what are its main controlling factors? 3. What is the greenhouse gas mitigation potential and microbiological basis for N2O consumption? 4. How can we characterize hot-spots and hot-moments of denitrification? Furthermore, we propose three questions about proximal controls on N cycling processes: 1. How does functional diversity of soil fauna affect N cycling beyond mineralization? 2. What is the functional relationship between root traits and soil N cycling? 3. To what extent do different types of mycorrhizal symbioses (differentially) affect N cycling? Finally, we identified a key challenge with respect to modelling: 1. How can advanced 15N/18O tracing models help us to better disentangle gross N transformation rates? We postulate that addressing these questions would constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation and climate stability.


2016 ◽  
Vol 101 ◽  
pp. 195-206 ◽  
Author(s):  
Wenbin Ma ◽  
Shengjing Jiang ◽  
Féline Assemien ◽  
Mingsen Qin ◽  
Beibei Ma ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. e02426 ◽  
Author(s):  
Clément Bardon ◽  
Boris Misery ◽  
Florence Piola ◽  
Franck Poly ◽  
Xavier Le Roux
Keyword(s):  
Soil N ◽  
N Cycle ◽  

2018 ◽  
Vol 426 (1-2) ◽  
pp. 211-225 ◽  
Author(s):  
Qi Liu ◽  
Yanhui Zhang ◽  
Benjuan Liu ◽  
James E. Amonette ◽  
Zhibin Lin ◽  
...  
Keyword(s):  
Soil N ◽  
N Cycle ◽  

2016 ◽  
Vol 95 ◽  
pp. 223-232 ◽  
Author(s):  
R. Liz Hamilton ◽  
Mark Trimmer ◽  
Chris Bradley ◽  
Gilles Pinay
Keyword(s):  
Oil Palm ◽  
Soil N ◽  
N Cycle ◽  

Author(s):  
Xin Chen ◽  
Pingli An ◽  
Kati Laakso ◽  
G. Arturo Sanchez-Azofeifa ◽  
Fangtian Wang ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1538
Author(s):  
Lijun Xu ◽  
Qian Liu ◽  
Yingying Nie ◽  
Feng Li ◽  
Guixia Yang ◽  
...  

Integration of perennial grass species into the current food production systems, especially in the agropastoral regions worldwide, may produce multiple benefits including, among others, a more stable productivity and a smaller eco-environmental footprint. However, one of the fundamental challenges facing the large-scale adoption of such grass species is their ability to withstand the vagaries of winter in these regions. Here, we present a comprehensive evaluation of the winter hardiness of 50 indigenous Chinese cultivars of alfalfa, a high-quality leguminous perennial grass, in comparison with six introduced U.S. cultivars in a multi-site field experiment in northern China. Our results reveal that indigenous cultivars have stronger winter hardiness than introduced cultivars. Cultivars native in the north performed better than southern cultivars, suggesting that suitability evaluation is an unavoidable step proceeding any regional implementations. Our results also show that the metric we used to assess alfalfa’s winter hardiness, the average score index (ASI), produced more consistent results than another more-widely used metric of winter survival rate (WSR). These findings offer a systematic field evidence that supports regional cropping system adjustment and production system betterment to ensure food security under climate change in the region and beyond.


Sign in / Sign up

Export Citation Format

Share Document