scholarly journals The soil N cycle: new insights and key challenges

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.

2014 ◽  
Vol 1 (1) ◽  
pp. 623-676 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
T. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the center of attention in soil science research. The importance of N as a nutrient for all biota; the ever increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measurement and mitigation of the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges for future research (Fig. 1). We identified four key questions with respect to N cycling processes: 1. How large is the contribution of non-symbiotic N fixation in natural systems? 2. How important is nitrifier denitrification and what are its main controlling factors? 3. What is the greenhouse gas mitigation potential and microbiological basis for N2O consumption? 4. How can we characterize hot-spots and hot-moments of denitrification? Furthermore, we propose three questions about proximal controls on N cycling processes: 1. How does functional diversity of soil fauna affect N cycling beyond mineralization? 2. What is the functional relationship between root traits and soil N cycling? 3. To what extent do different types of mycorrhizal symbioses (differentially) affect N cycling? Finally, we identified a key challenge with respect to modelling: 1. How can advanced 15N/18O tracing models help us to better disentangle gross N transformation rates? We postulate that addressing these questions would constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation and climate stability.


2013 ◽  
Vol 8 (4) ◽  
pp. 29 ◽  
Author(s):  
Nunzio Fiorentino ◽  
Massimo Fagnano ◽  
Paola Adamo ◽  
Adriana Impagliazzo ◽  
Mauro Mori ◽  
...  

Author(s):  
Upendra Sainju ◽  
Rajan Ghimire ◽  
Gautam Pradhan

Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2007 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)-fallow (CTB-F), no-tillage barley-fallow (NTB-F), no-tillage barley-pea (Pisum sativum L.) (NTB-P), and no-tillage continuous barley (NTCB). Nitrogen rates to barley were 0, 40, 80, and 120 kg N ha-1. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28 to 37% greater with NTB-P and NTCB than CTB-F and NTB-F. Total N input and output also increased with increased N rate. Nitrogen sequestration rate at 0 to 10 cm averaged 22 kg N ha-1 yr-1 for all treatments. Nitrogen deficit ranged from 5 to 16 kg N ha-1 yr-1, with greater deficits for CTB-F and NTB-P and higher N rates. Because of increased grain N removal and reduced N loss to the environment and N fertilizer requirement, NTB-P with 40 kg N ha-1 can enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.


2021 ◽  
Vol 278 ◽  
pp. 116852
Author(s):  
Xin Zhang ◽  
Guangmin Xiao ◽  
Roland Bol ◽  
Ligang Wang ◽  
Yuping Zhuge ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xianyu Yao ◽  
Qianchun Zhang ◽  
Haiju Zhou ◽  
Zhi Nong ◽  
Shaoming Ye ◽  
...  

Abstract Background There is substantial evidence that Eucalyptus for nitrogen (N) absorption and increasing the growth benefit from the introduction of N-fixing species, but the underlying mechanisms for microbially mediated soil N cycling remains unclear. Methods We investigated the changes of soil pH, soil water content (SWC), soil organic carbon (SOC), total N (TN), inorganic N (NH4+-N and NO3−-N), microbial biomass and three N-degrading enzyme activities as well as the biomass and N productivity of Eucalyptus between a pure Eucalyptus urophylla × grandis plantation (PP) and a mixed Dalbergia odorifera and Eucalyptus plantation (MP) in Guangxi Zhuang Autonomous Region, China. Results Compared with the PP site, soil pH, SWC, SOC and TN in both seasons were significantly higher at the MP site, which in turn enhanced microbial biomass and the activities of soil N-degrading enzymes. The stimulated microbial activity at the MP site likely accelerate soil N mineralization, providing more available N (NH4+-N in both seasons and NO3−-N in the wet-hot season) for Eucalyptus absorption. Overall, the N productivity of Eucalyptus at the MP site was increased by 19.7% and 21.9%, promoting the biomass increases of 15.1% and 19.2% in the dry-cold season and wet-hot season, respectively. Conclusion Our results reveal the importance of microbially mediated soil N cycling in the N absorption on Eucalyptus. Introduction of D. odorifera enhances Eucalyptus biomass and N productivity, improve soil N availability and increased soil C and N concentration, which hence can be considered to be an effective sustainable management option of Eucalyptus plantations.


1983 ◽  
Vol 63 (3) ◽  
pp. 425-433 ◽  
Author(s):  
M. SCHNITZER ◽  
P. R. MARSHALL ◽  
D. A. HINDLE

Close to 50% of the total N in soils has so far not been identified. Previous studies indicate that this "unknown" N might be bio-available and may participate in the soil N cycle. The objective of this investigation was to develop a procedure which would allow us to isolate from soils, fractions which were rich in unknown N but which would contain only small amounts of known N compounds. We felt that the availability of such fractions would permit us to learn more about the characteristics of the unknown N components without too much interference from the many known N-containing constituents. The isolation procedure involved (a) the extraction and separation of humic (HA) and fulvic acid (FA) fractions from soils; (b) hydrolysis of each fraction with hot 6 mol∙L−1 HCl; (c) separation of neutralized hydrolyzates on Sephadex G-25 gel; and (d) further separation of the highest molecular weight fractions of the neutralized hydrolyzates on G-50 gel, and of the second highest molecular weight fractions on G-15 gel. For soil samples taken from the Ah horizon of the Bainsville soil (a Humic Gleysol) and the Bh horizon of the Armadale (a Podzol), proportions of soil-N in HAs and FAs, and in fractions derived from them were, in HAs + FAs, 29.3 and 56.9%; in water-soluble, hydrolyzed HA- and FA- fractions, 12.0 and 19.7%; and in nonhydrolyzable and water-insoluble (at pH 7) fractions, 9.0 and 16.3%, respectively. Substantial portions of the soil N were left unextracted in the humins. Several fractions were isolated by the procedure described herein; in some close to 98% of the total N consisted of unknown N. Key words: Amino acid nitrogen, ammonia nitrogen, acid hydrolysis, gel filtration


2016 ◽  
Vol 101 ◽  
pp. 195-206 ◽  
Author(s):  
Wenbin Ma ◽  
Shengjing Jiang ◽  
Féline Assemien ◽  
Mingsen Qin ◽  
Beibei Ma ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. e02426 ◽  
Author(s):  
Clément Bardon ◽  
Boris Misery ◽  
Florence Piola ◽  
Franck Poly ◽  
Xavier Le Roux
Keyword(s):  
Soil N ◽  
N Cycle ◽  

2021 ◽  
Author(s):  
Greta Formaglio ◽  
Edzo Veldkamp ◽  
Muhammad Damris ◽  
Aiyen Tjoa ◽  
Marife D. Corre

AbstractIntensive management practices in large-scale oil palm plantations can slow down nutrient cycling and alter other soil functions. Thus, there is a need to reduce management intensity without sacrificing productivity. The aim of our study was to investigate the effect of management practices on gross rates of soil N cycling and soil fertility. In Jambi province, Indonesia, we established a management experiment in a large-scale oil palm plantation to compare conventional practices (i.e. high fertilization rates and herbicide weeding) with reduced management intensity (i.e. reduced fertilization rates and mechanical weeding). Also, we compared the typical management zones characterizing large-scale plantations: palm circle, inter-row and frond-stacked area. After 1.5 years of this experiment, reduced and conventional management showed comparable gross soil N cycling rates; however, there were stark differences among management zones. The frond-stacked area had higher soil N cycling rates and soil fertility (high microbial biomass, extractable C, soil organic C, extractable organic N, total N and low bulk density) than inter-row and palm circle (all p ≤ 0.05). Microbial biomass was the main driver of the soil N cycle, attested by its high correlation with gross N-cycling rates (r = 0.93–0.95, p < 0.01). The correlations of microbial N with extractable C, extractable organic N, soil organic C and total N (r = 0.76–0.89, p < 0.01) suggest that microbial biomass was mainly regulated by the availability of organic matter. Mulching with senesced fronds enhanced soil microbial biomass, which promoted nutrient recycling and thereby can decrease dependency on chemical fertilizers.


2016 ◽  
Vol 113 (29) ◽  
pp. 8033-8040 ◽  
Author(s):  
Michaeline B. Nelson ◽  
Adam C. Martiny ◽  
Jennifer B. H. Martiny

Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we still lack a global overview of the abundance and composition of the microorganisms carrying out soil N processes. To address this gap, we characterized the biogeography of microbial N traits, defined as eight N-cycling pathways, using publically available soil metagenomes. The relative frequency of N pathways varied consistently across soils, such that the frequencies of the individual N pathways were positively correlated across the soil samples. Habitat type, soil carbon, and soil N largely explained the total N pathway frequency in a sample. In contrast, we could not identify major drivers of the taxonomic composition of the N functional groups. Further, the dominant genera encoding a pathway were generally similar among habitat types. The soil samples also revealed an unexpectedly high frequency of bacteria carrying the pathways required for dissimilatory nitrate reduction to ammonium, a little-studied N process in soil. Finally, phylogenetic analysis showed that some microbial groups seem to be N-cycling specialists or generalists. For instance, taxa within the Deltaproteobacteria encoded all eight N pathways, whereas those within the Cyanobacteria primarily encoded three pathways. Overall, this trait-based approach provides a baseline for investigating the relationship between microbial diversity and N cycling across global soils.


Sign in / Sign up

Export Citation Format

Share Document