scholarly journals The soil N cycle: new insights and key challenges

2014 ◽  
Vol 1 (1) ◽  
pp. 623-676 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
T. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the center of attention in soil science research. The importance of N as a nutrient for all biota; the ever increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measurement and mitigation of the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges for future research (Fig. 1). We identified four key questions with respect to N cycling processes: 1. How large is the contribution of non-symbiotic N fixation in natural systems? 2. How important is nitrifier denitrification and what are its main controlling factors? 3. What is the greenhouse gas mitigation potential and microbiological basis for N2O consumption? 4. How can we characterize hot-spots and hot-moments of denitrification? Furthermore, we propose three questions about proximal controls on N cycling processes: 1. How does functional diversity of soil fauna affect N cycling beyond mineralization? 2. What is the functional relationship between root traits and soil N cycling? 3. To what extent do different types of mycorrhizal symbioses (differentially) affect N cycling? Finally, we identified a key challenge with respect to modelling: 1. How can advanced 15N/18O tracing models help us to better disentangle gross N transformation rates? We postulate that addressing these questions would constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation and climate stability.

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


2013 ◽  
Vol 8 (4) ◽  
pp. 29 ◽  
Author(s):  
Nunzio Fiorentino ◽  
Massimo Fagnano ◽  
Paola Adamo ◽  
Adriana Impagliazzo ◽  
Mauro Mori ◽  
...  

2021 ◽  
Vol 278 ◽  
pp. 116852
Author(s):  
Xin Zhang ◽  
Guangmin Xiao ◽  
Roland Bol ◽  
Ligang Wang ◽  
Yuping Zhuge ◽  
...  

2016 ◽  
Vol 101 ◽  
pp. 195-206 ◽  
Author(s):  
Wenbin Ma ◽  
Shengjing Jiang ◽  
Féline Assemien ◽  
Mingsen Qin ◽  
Beibei Ma ◽  
...  

Ecosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. e02426 ◽  
Author(s):  
Clément Bardon ◽  
Boris Misery ◽  
Florence Piola ◽  
Franck Poly ◽  
Xavier Le Roux
Keyword(s):  
Soil N ◽  
N Cycle ◽  

2018 ◽  
Vol 426 (1-2) ◽  
pp. 211-225 ◽  
Author(s):  
Qi Liu ◽  
Yanhui Zhang ◽  
Benjuan Liu ◽  
James E. Amonette ◽  
Zhibin Lin ◽  
...  
Keyword(s):  
Soil N ◽  
N Cycle ◽  

Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 77 ◽  
Author(s):  
Katherine S. Rocci ◽  
Steven J. Fonte ◽  
Joseph C. von Fischer ◽  
M. Francesca Cotrufo

Sustainable nitrogen (N) management in agroecosystems is crucial for supporting crop production and reducing deleterious N losses. Biochar application with N-fixing legumes offers promise for increasing soil N retention and input. Strategic, low application rates (112 kg ha−1) of pine and coconut feedstock biochars were tested in an established alfalfa (Medicago sativa) field. Soil inorganic N and plant growth, N concentrations, and δ15N were monitored over a growing season to follow mineral N availability, and plant N uptake and sourcing. Microbial and gene abundance and enzyme activity were measured to assess the potential for N cycling processes to occur. Biochar application had minimal effects on measured parameters. However, significant temporal dynamics in N cycling and correlations between alfalfa δ15N and soil N availability indicate differing plant N sourcing over time. Our findings indicate that low application rates of biochar in established alfalfa fields do not significantly affect N cycling, and that managing alfalfa to maximize N fixation, for example by intercropping, may be a better solution to increase N stocks and retention in this system. To determine when biochar can be beneficial for alfalfa N cycling, we need additional research to assess various economically-feasible biochar application rates at different alfalfa growth stages.


2016 ◽  
Vol 95 ◽  
pp. 223-232 ◽  
Author(s):  
R. Liz Hamilton ◽  
Mark Trimmer ◽  
Chris Bradley ◽  
Gilles Pinay
Keyword(s):  
Oil Palm ◽  
Soil N ◽  
N Cycle ◽  

Sign in / Sign up

Export Citation Format

Share Document