Green sporopollenin supported cyanocalixarene based magnetic adsorbent for pesticides removal from water: Kinetic and equilibrium studies

2021 ◽  
pp. 111588
Author(s):  
Muhammad Afzal Kamboh ◽  
Sadaf Sadia Arain ◽  
Ashique Hussain Jatoi ◽  
Bibi Sherino ◽  
Tahani Saad Algarni ◽  
...  
2016 ◽  
Vol 15 (12) ◽  
pp. 2719-2732 ◽  
Author(s):  
Tarek E. Khalil ◽  
Hossam Altaher ◽  
Reda Abubeah

2013 ◽  
Vol 12 (11) ◽  
pp. 2137-2147 ◽  
Author(s):  
Mohammad Noori Sepehr ◽  
Mohammad Reza Samarghandi ◽  
Mansur Zarrabi ◽  
Abdeltif Amrane ◽  
Mohammad Mahdi Soori

2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


2017 ◽  
Vol 73 (3) ◽  
Author(s):  
Osasona Ilesanmi ◽  
Adebayo Albert Ojo ◽  
Okronkwo Elvis Afemafuna ◽  
Johnson Jonathan ◽  
Osunlana Oluronke

1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.


2009 ◽  
Vol 54 (7) ◽  
pp. 1991-1996 ◽  
Author(s):  
Şahika Sena Bayazit ◽  
Hasan Uslu ◽  
İsmail İnci

2021 ◽  
Vol 13 (3) ◽  
pp. 1502
Author(s):  
Maria Xanthopoulou ◽  
Dimitrios Giliopoulos ◽  
Nikolaos Tzollas ◽  
Konstantinos S. Triantafyllidis ◽  
Margaritis Kostoglou ◽  
...  

In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.


Sign in / Sign up

Export Citation Format

Share Document