Snow albedo reductions induced by the internal/external mixing of black carbon and mineral dust, and different snow grain shapes across northern China

2022 ◽  
pp. 112670
Author(s):  
Tenglong Shi ◽  
Jiecan Cui ◽  
Dongyou Wu ◽  
Yuxuan Xing ◽  
Yang Chen ◽  
...  
2021 ◽  
Vol 15 (5) ◽  
pp. 2255-2272
Author(s):  
Wei Pu ◽  
Tenglong Shi ◽  
Jiecan Cui ◽  
Yang Chen ◽  
Yue Zhou ◽  
...  

Abstract. When black carbon (BC) is mixed internally with other atmospheric particles, the BC light absorption effect is enhanced. This study explicitly resolved the optical properties of coated BC in snow based on the core / shell Mie theory and the Snow, Ice, and Aerosol Radiative (SNICAR) model. Our results indicated that the BC coating effect enhances the reduction in snow albedo by a factor ranging from 1.1–1.8 for a nonabsorbing shell and 1.1–1.3 for an absorbing shell, depending on the BC concentration, snow grain radius, and core / shell ratio. We developed parameterizations of the BC coating effect for application to climate models, which provides a convenient way to accurately estimate the climate impact of BC in snow. Finally, based on a comprehensive set of in situ measurements across the Northern Hemisphere, we determined that the contribution of the BC coating effect to snow light absorption exceeds that of dust over northern China. Notably, high enhancements of snow albedo reduction due to the BC coating effect were found in the Arctic and Tibetan Plateau, suggesting a greater contribution of BC to the retreat of Arctic sea ice and Tibetan glaciers.


2020 ◽  
Author(s):  
Wei Pu ◽  
Tenglong Shi ◽  
Jiecan Cui ◽  
Yang Chen ◽  
Yue Zhou ◽  
...  

Abstract. When black carbon (BC) is internally mixed with other atmospheric particles, BC light absorption is effectively enhanced. This study is the first to explicitly resolve the optical properties of coated BC in snow, based on core/shell Mie theory and a snow, ice, and aerosol radiative model (SNICAR). Our results indicate that a "BC coating effect" enhances the reduction of snow albedo by a factor of 1.1–1.8 for a non-absorbing shell and 1.1–1.3 for an absorbing shell, depending on BC concentration, snow grain radius, and core/shell ratio. We develop parameterizations of the BC coating effect for application to climate models, which provides a convenient way to accurately estimate the climate impact of BC in snow. Finally, based on a comprehensive set of in situ measurements across the Northern Hemisphere, we find that the contribution of the BC coating effect to snow light absorption has exceeded that of dust over northern China. Notably, the high enhancements of snow albedo reductions by BC coating effect were found in the Arctic and Tibetan Plateau, suggesting a greater contribution of BC to the retreat of Arctic sea ice and Tibetan glaciers.


2020 ◽  
Vol 13 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Xin Wang ◽  
Xueying Zhang ◽  
Wenjing Di

Abstract. An improved two-sphere integration (TSI) technique has been developed to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters. The TSI technique can be calibrated using a series of 15 filter samples of standard fullerene soot. This technique quantifies the mass of BC by separating the spectrally resolved total light absorption into BC and non-BC fractions. To assess the accuracy of the improved system, an empirical procedure for measuring BC concentrations with a two-step thermal–optical method is also applied. Laboratory results indicate that the BC concentrations determined using the TSI technique and theoretical calculations are well correlated (R2=0.99), whereas the thermal–optical method underestimates BC concentrations by 35 %–45 % compared to that measured by the TSI technique. Assessments of the two methods for atmospheric and snow samples revealed excellent agreement, with least-squares regression lines with slopes of 1.72 (r2=0.67) and 0.84 (r2=0.93), respectively. However, the TSI technique is more accurate in quantifications of BC concentrations in both the atmosphere and seasonal snow, with an overall lower uncertainty. Using the improved TSI technique, we find that light absorption at a wavelength of 550 nm due to BC plays a dominant role relative to non-BC light absorption in both the atmosphere (62.76 %–91.84 % of total light absorption) and seasonal snow (43.11 %–88.56 %) over northern China.


2021 ◽  
pp. 118564
Author(s):  
Roseline C. Thakur ◽  
B.S. Arun ◽  
Mukunda M. Gogoi ◽  
Meloth Thamban ◽  
Renoj J. Thayyen ◽  
...  

2013 ◽  
Vol 78 ◽  
pp. 259-267 ◽  
Author(s):  
Teppei J. Yasunari ◽  
Qian Tan ◽  
K.-M. Lau ◽  
Paolo Bonasoni ◽  
Angela Marinoni ◽  
...  

2016 ◽  
Author(s):  
Yu Hao Mao ◽  
Hong Liao

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated JJA and DJF surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = –0.7 (–0.7) in GEOS-4 and –0.4 (–0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the five strongest EASM years, simulated JJA surface BC concentrations in the five weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the five strongest EAWM years, simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere were 0.04 W m−2 (3 %, (0.03 W m−2, 2 %)) higher in northern China but 0.06 W m−2 (14 %, (0.03 W m−2, 3 %)) lower in southern China. In the weakest monsoon years, the weaker vertical convection led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to –0.09 µg m−3 (–46 %) and –0.08 µg m−3 (–11 %) at 1–2 km in eastern China.


2010 ◽  
Vol 10 (4) ◽  
pp. 9291-9328 ◽  
Author(s):  
T. J. Yasunari ◽  
P. Bonasoni ◽  
P. Laj ◽  
K. Fujita ◽  
E. Vuillermoz ◽  
...  

Abstract. The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March–May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 μg m−2 day−1 providing a total deposition of 266 μg m−2 for March–May at the site, based on a calculation with a minimal deposition velocity of 1.0×10−4 m s−1 with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1–669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0–68.2 μg kg−1 assuming snow density variations of 195–512 kg m−3 of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0–5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70–204 mm of water drainage equivalent of 11.6–33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.


2017 ◽  
Author(s):  
Yulan Zhang ◽  
Shichang Kang ◽  
Michael Sprenger ◽  
Zhiyuan Cong ◽  
Tanguang Gao ◽  
...  

2019 ◽  
Vol 13 (8) ◽  
pp. 2169-2187 ◽  
Author(s):  
Francois Tuzet ◽  
Marie Dumont ◽  
Laurent Arnaud ◽  
Didier Voisin ◽  
Maxim Lamare ◽  
...  

Abstract. Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g−1 (r2=0.81) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black carbon). We also observe an enhancement of light absorption between 350 and 650 nm in the presence of liquid water in the snowpack, which is discussed but not fully elucidated. A single SIP acquisition lasts approximately 1 min and is hence much faster than collecting a profile of chemical measurements. With the recent advances in modelling LAP–snow interactions, our method could become an attractive alternative to estimate vertical profiles of LAP concentrations in snow.


Sign in / Sign up

Export Citation Format

Share Document