scholarly journals Stress evolution during the megathrust earthquake cycle and its role in triggering extensional deformation in subduction zones

2020 ◽  
Vol 544 ◽  
pp. 116379
Author(s):  
Matthew W. Herman ◽  
Rob Govers
2009 ◽  
Vol 4 (2) ◽  
pp. 99-105
Author(s):  
Kazuro Hirahara ◽  

Recent earthquake cycle simulation based on laboratory derived rate and state friction laws with super-parallel computers have successfully reproduced historical earthquake cycles. Earthquake cycle simulation is thus a powerful tool for providing information on the occurrence of the next Nankai megathrust earthquake, if simulation is combined with data assimilation for historical data and recently ongoing crustal activity data observed by networks extending from the land to the ocean floor. Present earthquake cycle simulation assumes simplifications in calculation, however, that differ from actual complex situations. Executing simulation relaxing these simplifications requires huge computational demands, and is difficult with present supercomputers. Looking toward advanced simulation of Nankai megathrust earthquake cycles with next-generation petaflop supercomputers, we present 1) an evaluation of effects of the actual medium in earthquake cycle simulation, 2) improved deformation data with GPS and InSAR and of inversion for estimating frictional parameters, and 3) the estimation of the occurrence of large inland earthquakes in southwest Japan and of Nankai megathrust earthquakes.


Geology ◽  
2017 ◽  
Vol 45 (11) ◽  
pp. 1051-1054 ◽  
Author(s):  
Jaime E. Delano ◽  
Colin B. Amos ◽  
John P. Loveless ◽  
Tammy M. Rittenour ◽  
Brian L. Sherrod ◽  
...  

2020 ◽  
Author(s):  
Cédric Bulois ◽  
François Michaud ◽  
Marianne Saillard ◽  
Nicolas Espurt ◽  
Marc Regnier ◽  
...  

<p>Over the last 23 Myr, the roughly east-directed subduction of the Nazca Plate beneath South America led to the formation of several mountain ranges associated with the overall northern Andes evolution. Along the active southwestern Ecuadorian margin, the compressional setting involves the Cretaceous-Miocene Chongón-Colonche / Santa Elena terranes, overlain by recent sedimentary basins. This geological setting, generally interpreted as an onshore-offshore forearc system, evolves in close relation with the active tectonic escape of the North Andean Sliver and the opening of the Gulf of Guayaquil. This region is characterised by a widespread extensional deformation in the upper plate that overprints moderate subduction and crustal earthquakes.</p><p>To better document such extensional processes, we specifically explore the offshore shelf and the littoral area of the Santa Elena Peninsula using academic and industrial 2D seismic profiles calibrated with local wells and field observations. We document a trench-parallel fault network, composed of >20km-long normal faults that take place on top of the former Chongón-Colonche accretionary wedge. These faults are linearly-steep along the trench, and are listric toward the continent where they clearly control fault-block rotation. They separate flexural basins developing on the platform ahead the Chongón-Colonche Cordillera, and are associated with immerged terraces most likely formed during the Last Glacial Maximum. They also may link to further onshore marine terraces developing since the Pleistocene across the coastline.</p><p>These observations suggest a peculiar dismantlement of the margin, mainly affected by tectonic erosion involving reactivation of former compressional features. Normal faults are specifically interpreted as a regional syn-orogenic collapse of the Chongón-Colonche Cordillera, which may result from transecting subducting ridges, fracture zones and seamounts controlling, at least partially, the geometry and the nature of the deformation along the southwestern Ecuadorian margin. This deformation pattern is likely linked to a weak interseismic coupling along the subduction interface to which the active opening of the Gulf of Guayaquil overlaps. This project is funded by the project ANR MARACAS ANR-18-CE31-0022 (<em>MARine terraces along the northern Andean Coast as a proxy for seismic hazard ASsessment</em>).</p>


Author(s):  
Leonardo Aguirre ◽  
Klaus Bataille ◽  
Camila Novoa ◽  
Carlos Peña ◽  
Felipe Vera

ABSTRACT Subduction processes at convergent margins produce complex temporal and spatial crustal displacements during different periods of the earthquake cycle. Satellite geodesy observations provide important clues to constrain kinematic models at subduction zones. Here, we analyze geodetic observations in central Chile, where two large earthquakes occurred: 2010 Mw 8.8 Maule and 2015 Mw 8.3 Illapel. We propose a model that considers the motion along both interfaces of the brittle subducting slab as the sources responsible for the movement of the crust in the different periods of the earthquake cycle. Using standard inversion techniques, we provide a consistent framework of the kinematic displacement during each period of the earthquake cycle. We show that during the interseismic period prior to the Maule and Illapel earthquakes, two patches of slip rate on the lower interface are determined. These patches are located just below the future hypocenters. Because the interseismic period corresponds to the loading process and the coseismic to the unloading process, it is interesting to note that the area where loading is stronger corresponds to the area where unloading is also strong. Furthermore, we show that the Maule earthquake causes a significant displacement on the lower interface, just below the epicenter of the future Illapel earthquake to the north, a few years later. We speculate that the interaction between motions along both interfaces is the key to understanding the evolution of stress and the occurrence of earthquakes at subduction zones. This framework improves the understanding of the observed loading and unloading processes and potential triggering between subduction earthquakes.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Naoki Uchida ◽  
Roland B�rgmann

Ten years of interdisciplinary studies since the disastrous Tohoku-oki earthquake have improved our knowledge of earthquake-cycle processes and hazard, but prediction of such events remains elusive.


Sign in / Sign up

Export Citation Format

Share Document