Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems

2022 ◽  
pp. 116404
Author(s):  
Zhiyao Zhao ◽  
Yuqin Zhou ◽  
Xiaoyi Wang ◽  
Zhaoyang Wang ◽  
Yuting Bai
Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


Author(s):  
Kai Ma ◽  
Hao Ren ◽  
Tianhong Zhou ◽  
Fuping Wu ◽  
Guozhen Zhang

Abstract The Yellow River flows through Lanzhou city and is the only drinking water source for 3.6 million people. However, people are not clear about the water environmental quality and safety in Lanzhou. To address this problem. Water samples were collected from different sites within this section during the high water period, normal water period and dry water period, and the environmental quality and health risk of the surface water were evaluated using the Nemerow index and health risk assessment method. The results are as follows: first, none of the pollutants exceeded the standard, except for total nitrogen; second, the highest comprehensive evaluation score was 1.04, so the water quality level was good; third, the health risk assessment showed that health risk value of water quality in the Lanzhou section of the Yellow River is on the high side, which is mainly caused by Chromium(Cr); fourth, the carcinogenic risk is five orders of magnitude higher than the non-carcinogenic risk, and the total carcinogenic risk is higher than the maximum acceptable risk level (10−5 a−1), while the total non-carcinogenic risk is lower than the acceptable health risk level (10−6 a−1). Therefore, to ensure the safety of its drinking water, Cr pollutants in the Lanzhou section of the Yellow River should be properly treated and controlled.


2020 ◽  
Vol 15 (4) ◽  
pp. 1190-1201
Author(s):  
Kunwar Raghvendra Singh ◽  
Ankit Pratim Goswami ◽  
Ajay S. Kalamdhad ◽  
Bimlesh Kumar

Abstract Present study evaluated the surface water quality of Kameng River (Assam, India). Kameng River is the tributary of the river Brahmaputra, having its confluence at its north bank. Water samples were collected from 9 different locations along the stretch and 24 parameters were analysed. Water quality at all sampling sites was expressed in terms of overall index of pollution (OIP). The OIP of all sampling sites varied between 1.30 and 1.74. Principal component analysis (PCA) was used to identify the latent factors influencing the water quality of the river. PCA revealed that domestic wastewater and agricultural runoff were the leading sources causing adulteration of the river's water quality. The degree of contamination of each sampling site due to heavy metals was calculated by the contamination index and an associated human health risk assessment was done by computing average daily intake and Hazard quotient (HQ). The HQ of all sampling sites varied from 0.14 to 1.21. This work presents the reliability and practicability of the integrated use of these approaches in river water quality monitoring and assessment. These methods will be very useful for policy makers for assessing the cause and effect of pollution of water bodies and implementing policies to keep pollution under check.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1726 ◽  
Author(s):  
Mohammed Mahmoud ◽  
Mohamed Hamouda ◽  
Ruwaya Al Kendi ◽  
Mohamed Mohamed

The quality of household drinking water in a community of 30 houses in a district in Abu Dhabi, United Arab Emirates (UAE) was assessed over a period of one year (January to November 2015). Standard analytical techniques were used to screen for water quality parameters and contaminants of concern. Water quality was evaluated in the 30 households at four sampling points: kitchen faucet, bathroom faucet, household water tank, and main water pipe. The sampling points were chosen to help identify the source when an elevated level of a particular contaminant is observed. Water quality data was interpreted by utilizing two main techniques: spatial variation analysis and multivariate statistical techniques. Initial analysis showed that many households had As, Cd, and Pb concentrations that were higher than the maximum allowable level set by UAE drinking water standards. In addition, the water main samples had the highest concentration of the heavy metals compared to other sampling points. Health risk assessment results indicated that approximately 30%, 55%, and 15% of the houses studied had a high, moderate, and low risk from the prolonged exposure to heavy metals, respectively. The analysis can help with planning a spatially focused sampling plan to confirm the study findings and set an appropriate course of action.


Sign in / Sign up

Export Citation Format

Share Document