scholarly journals Water quality analysis and health risk assessment of the Lanzhou section of the Yellow River

Author(s):  
Kai Ma ◽  
Hao Ren ◽  
Tianhong Zhou ◽  
Fuping Wu ◽  
Guozhen Zhang

Abstract The Yellow River flows through Lanzhou city and is the only drinking water source for 3.6 million people. However, people are not clear about the water environmental quality and safety in Lanzhou. To address this problem. Water samples were collected from different sites within this section during the high water period, normal water period and dry water period, and the environmental quality and health risk of the surface water were evaluated using the Nemerow index and health risk assessment method. The results are as follows: first, none of the pollutants exceeded the standard, except for total nitrogen; second, the highest comprehensive evaluation score was 1.04, so the water quality level was good; third, the health risk assessment showed that health risk value of water quality in the Lanzhou section of the Yellow River is on the high side, which is mainly caused by Chromium(Cr); fourth, the carcinogenic risk is five orders of magnitude higher than the non-carcinogenic risk, and the total carcinogenic risk is higher than the maximum acceptable risk level (10−5 a−1), while the total non-carcinogenic risk is lower than the acceptable health risk level (10−6 a−1). Therefore, to ensure the safety of its drinking water, Cr pollutants in the Lanzhou section of the Yellow River should be properly treated and controlled.

2019 ◽  
Vol 78 ◽  
pp. 03004
Author(s):  
Miaomiao Tian ◽  
Wenzhao Li ◽  
Meijuan Ruan ◽  
Jing Wei ◽  
Weiwei Ma

Drinking water quality has become a great concern to the whole society, especially in heavily polluted rural areas. This paper analyzes the water quality of 100 water supping the US Environmental Protection Agency's (USEPA) recommended health risk assessment model. The results showed that the microbial indicators exceeded the standard in the whole year, and some of the water supply units which lead, nitrated and dissolved solids exceeding the standard. The model recommended by EPA is applied to establish risk assessment model for health risk assessment of adults in wet and dry seasons, respectively. Results of HRA indicated that carcinogenic risk of chromium was 7.61E-05a-1 and the risk value of arsenic was 9.92E-06a-1 which exceed the maximum acceptable risk level recommended by USEPA 5.0×10-5 closely to the ICPR recommendation 1.0×10-6. Meanwhile we conduct health risk assessment (HRA) on relevant non-carcinogenic indicators: nitrate is 2.95E-09a-1, the risk value of fluoride (F) is 2.49E-09a-1, the risk value of lead is 2.39E-09a-1 and copper (Cu) 9.00E-10a-1 exceeds the maximum acceptable risk level risk value recommended by USEPA 1.0×10-9. The above indicators require priority control and management of pollutants that are prioritized and managed.


Work ◽  
2021 ◽  
pp. 1-10
Author(s):  
Lu Zhang ◽  
Lin Li

BACKGROUND: The quality and safety of drinking water directly affect the health of the local population. However, due to the limited conditions in poor rural areas, the safety of drinking water is more prominent. OBJECTIVE: It aimed to ensure the safety of drinking water quality and population health in poor rural areas. METHODS: A rural poor area was taken as an example, the drinking water plants were monitored during wet season and dry season, respectively, and the water quality indicators of rural drinking water in the city in 2019 were detected and analyzed. Finally, based on the non-carcinogenic risk and carcinogenic risk evaluation model proposed, the health risk assessment of chemical pollutants in drinking water was carried out. RESULTS: In 2019, the qualified rate of drinking water in rural areas of the city was generally low. The average annual carcinogenic risk of drinking water in poor rural areas of the city was 1.57×10–6 (a–1), and the average annual non-carcinogenic risk was 5.38×10–9 (a–1). CONCLUSION: The health risk assessment model proposed can well evaluate the health risks of drinking water. The research provides a scientific basis for the risk management of drinking water of relevant departments.


Author(s):  
Reza Aghlmand ◽  
Saeed Rasi Nezami ◽  
Ali Abbasi

In recent years, in addition to water resources’ quantity, their quality has also received much attention. In this study, the quality of the urban water distribution network in northwestern Iran was evaluated using the water quality index (WQI) method. Then, some important trace elements were investigated, and finally, the health risk assessment was evaluated for both carcinogenic elements (Ni, Cd, Cr, Pb, and As) and non-carcinogenic elements (Ca, Mg, Na, K, F, NO3, and Cu) using carcinogenic risk (CR) and hazard quotient (HQ), respectively. In the present study, the WQI was calculated based on both World Health Organization (WHO) and Iranian drinking water standards. Comparing the results of these standards revealed that the WQI based on the Iranian standard was slightly higher. Regarding the calculated WQI for the study region, the status of water quality for drinking consumption is in the good water quality class (25 < WQI < 50). It was observed that Cu and Cd have the highest and lowest concentrations in all sampling points, respectively. Hazard Index (HI) results showed that the non-carcinogenic substances studied had a low risk for both adults and children (<1.0). However, the CR results showed that Ni, Cd, and As were above the desired level for both children and adults. The results of this study can be applied for efficient water management and human health protection programs in the study area.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1726 ◽  
Author(s):  
Mohammed Mahmoud ◽  
Mohamed Hamouda ◽  
Ruwaya Al Kendi ◽  
Mohamed Mohamed

The quality of household drinking water in a community of 30 houses in a district in Abu Dhabi, United Arab Emirates (UAE) was assessed over a period of one year (January to November 2015). Standard analytical techniques were used to screen for water quality parameters and contaminants of concern. Water quality was evaluated in the 30 households at four sampling points: kitchen faucet, bathroom faucet, household water tank, and main water pipe. The sampling points were chosen to help identify the source when an elevated level of a particular contaminant is observed. Water quality data was interpreted by utilizing two main techniques: spatial variation analysis and multivariate statistical techniques. Initial analysis showed that many households had As, Cd, and Pb concentrations that were higher than the maximum allowable level set by UAE drinking water standards. In addition, the water main samples had the highest concentration of the heavy metals compared to other sampling points. Health risk assessment results indicated that approximately 30%, 55%, and 15% of the houses studied had a high, moderate, and low risk from the prolonged exposure to heavy metals, respectively. The analysis can help with planning a spatially focused sampling plan to confirm the study findings and set an appropriate course of action.


2020 ◽  
Author(s):  
Zhifeng Huang ◽  
xingru zhao ◽  
Xiaocui Qiao ◽  
Chengyou Liu ◽  
Binghui Zheng

Abstract Background: Metal pollution in rivers has been a serious environmental problem in aquatic ecosystems. The Xiangjiang River is an important drinking water resource for the Hunan province of China. It is crucial to ascertain the pollution status and health risk of metal in this river. In this study, both surface and overlying water samples were collected from the Xiangjiang River and 12 dissolved metals (Mg, V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, Sb, and Ba) were investigated. Results: Average concentrations fell in the order of dissolved metal Mg > Mn > Ba > Fe > Zn > As > Sb > Ni > Cd > V > Cr > Co, all of which were lower than the threshold values for drinking water guidelines of China. There was no significant difference in metal concentrations between surface and overlying water. Health risk assessment shows carcinogenic risk (CR) values of As and Cd were higher than the critical value, and children are more susceptible to the health risk of dissolved metals caused by drinking ingestion. Conclusion: The water quality in this area was good overall. Metals pollution appeared more serious in the midstrean and on the southern side of the investigated area. Anthropogenic activities are the main source of heavy metals in the river. Dissolved metals have health risk to local children with hazard index (HI) > 1. While more attention should be paid to As and Cd, which had a potential carcinogenic risk to human. The results provide guidance for controlling metal pollution and protecting drinking water sources in the Xiangjiang River.


Author(s):  
VN Fedorov ◽  
EV Zaritskaya ◽  
YuA Novikova ◽  
YuN Sladkova ◽  
ND Metelitsa

Summary. Introduction: As the most important environmental factor having multiple effects on human vital activities and health, drinking water often becomes the subject of predicting adverse health effects. With the purpose of establishing quantitative and/or qualitative characteristics of harmful effects of drinking water chemicals for human health, an integral assessment of drinking water quality with subsequent health risk assessment is carried out. It is based on estimating the risk posed by chronic (carcinogenic and non-carcinogenic) exposures that shows probability of developing a disease. Results: Practical activities of departments and institutions of the Federal Service for Surveillance in the Sphere of Consumers Rights and Human Wellbeing (Rospotrebnadzor) on assessing health effects of environmental factors have demonstrated that, even in concentrations equaling their detection limits in quite a number of test methods, most chemical water pollutants pose unacceptable carcinogenic and non-carcinogenic risks both for the general population and occupational cohorts. Thus, the results of some laboratory methods of testing are inappropriate for an objective human health risk assessment. Conclusions: We describe criteria for selecting methods of the quantitative chemical analysis of drinking water fit for the purposes of sanitary and epidemiologic expert examination combined with a population health risk assessment. The criteria of choice have been elaborated based on the review of regulatory and method documents and results of analytical testing of drinking water quality.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5955 ◽  
Author(s):  
Chan-Chan Xiao ◽  
Mao-Jian Chen ◽  
Fan-Biao Mei ◽  
Xiang Fang ◽  
Tian-Ren Huang ◽  
...  

The Yongjiang river is a large, shallow, hyper-trophic, freshwater river in Guangxi, China. To investigate the presence of microcystin-RR, microcystin-LR, and microcystin-YR (MC-RR, MC-LR, and MC-YR) in the Yongjiang river and describe their correlation with environmental factors, as well as, assess health risk using Monte Carlo simulation, 90 water samples were collected at three sample points from March to December 2017. Results showed that during the monitoring period, total concentrations of MC-RR (TMC-RR), MC-YR (TMC-YR), and MC-LR (TMC-LR) varied from 0.0224 to 0.3783 μg/L, 0.0329 to 0.1433 μg/L, and 0.0341 to 0.2663 μg/L, respectively. Total phosphorus (TP) content appeared to be related to TMC-LR and the total concentrations of microcystins (TMCs), while pH and total nitrogen (TN)/TP ratio appeared to be related to TMC-RR and TMC-YR, respectively. Using the professional health risk assessment software @Risk7.5, the risks of dietary intake of microcystins (MCs), including the carcinogenic risk and non-carcinogenic risk, were evaluated. It was found that the carcinogenic risk of MC-RR from drinking water was higher than MC-LR and MC-YR, and the presence of MCs would lead to high potential health risks, especially in children. The carcinogenic risk of MC-RR to children was >1 × 10−4, the maximum allowance level recommended by the US Environmental Protection Agency; as for adults, it was >5 × 10−5, the maximum allowance level recommended by the International Commission on Radiological Protection. The non-carcinogenic hazard index (HI) of MC-RR, MC-YR, and MC-LR increased successively, indicating that MC-LR was more hazardous to human health than MC-YR and MC-RR, but its HI was <1. This suggests that MCs pose less risk to health. However, it is necessary to strengthen the protection and monitoring of drinking water source for effective control of water pollution and safeguarding of human health.


Sign in / Sign up

Export Citation Format

Share Document