Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo

2014 ◽  
Vol 37 (1) ◽  
pp. 300-314 ◽  
Author(s):  
Sourav Sikdar ◽  
Avinaba Mukherjee ◽  
Samrat Ghosh ◽  
Anisur Rahman Khuda-Bukhsh
2016 ◽  
Vol 42 (4) ◽  
pp. 997-1005 ◽  
Author(s):  
Shi-Jun Zhao ◽  
Xian-Jun Wang ◽  
Qing-Jian Wu ◽  
Chao Liu ◽  
Da-Wei Li ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 153303382096075
Author(s):  
Pihong Li ◽  
Luguang Liu ◽  
Xiangguo Dang ◽  
Xingsong Tian

Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.


2005 ◽  
Vol 25 (12) ◽  
pp. 4993-5010 ◽  
Author(s):  
Xiaoqi Liu ◽  
Chin-Yo Lin ◽  
Ming Lei ◽  
Shi Yan ◽  
Tianhua Zhou ◽  
...  

ABSTRACT Experiments from several different organisms have demonstrated that polo-like kinases are involved in many aspects of mitosis and cytokinesis. Here, we provide evidence to show that Plk1 associates with chaperonin-containing TCP1 complex (CCT) both in vitro and in vivo. Silencing of CCT by use of RNA interference (RNAi) in mammalian cells inhibits cell proliferation, decreases cell viability, causes cell cycle arrest with 4N DNA content, and leads to apoptosis. Depletion of CCT in well-synchronized HeLa cells causes cell cycle arrest at G2, as demonstrated by a low mitotic index and Cdc2 activity. Complete depletion of Plk1 in well-synchronized cells also leads to G2 block, suggesting that misfolded Plk1 might be responsible for the failure of CCT-depleted cells to enter mitosis. Moreover, partial depletion of CCT or Plk1 leads to mitotic arrest. Finally, the CCT-depleted cells reenter the cell cycle upon reintroduction of the purified constitutively active form of Plk1, indicating that Plk1 might be a CCT substrate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xinchen Yang ◽  
Shikun Yang ◽  
Jinhua Song ◽  
Wenjie Yang ◽  
Yang Ji ◽  
...  

AbstractGrowing evidence demonstrates that MicroRNAs (miRNAs) play an essential role in contributing to tumor development and progression. However, the underlying role and mechanisms of miR-23b-5p in hepatocellular carcinoma (HCC) formation remain unclear. Our study showed that miR-23b-5p was downregulated in the HCC tissues and cell lines, and lower expression of miR-23b-5p was associated with more severe tumor size and poorer survival. Gain- or loss-of-function assays demonstrated that miR-23b-5p induced G0/G1 cell cycle arrest and inhibited cell proliferation both in vitro and in vivo. qRT-PCR, western blot and luciferase assays verified that Mammalian transcription factor Forkhead Box M1 (FOXM1), upregulated in HCC specimens, was negatively correlated with miR-23b-5p expression and acted as a direct downstream target of miR-23b-5p. In addition, miR-23b-5p could regulate cyclin D1 and c-MYC expression by directly targeting FOXM1. Further study revealed that restoration of FOXM1 neutralized the cell cycle arrest and cell proliferation inhibition caused by miR-23b-5p. Taken together, our findings suggest that miR-23b-5p acted as a tumor suppressor role in HCC progression by targeting FOXM1 and may serve as a potential novel biomarker for HCC diagnosis and prognosis.


2019 ◽  
Author(s):  
Hardeep Kaur ◽  
GN Krishnaprasad ◽  
Michael Lichten

AbstractIn Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are precursors of crossovers. In vitro studies have suggested that the dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation could be responsible for this. To ask if dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth, a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during return to growth delayed joint molecule resolution, but ultimately most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9Δ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in rad9Δ, Rmi1-depleted cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1343-1343
Author(s):  
Oscar Quintana-Bustamante ◽  
S. Lan-Lan Smith ◽  
Jude Fitzgibbon ◽  
Dominique Bonnet

Abstract Acute Myeloid Leukemia (AML) is characterized by an abnormal hematopoietic differentiation and uncontrolled cell proliferation. Mutations in several transcription factors (TFs) have been implicated in the development of leukemia. One of these TFs is CCAAT/enhancer-binding protein-α (C/EBPα). In normal hematopoiesis, C/EBPα plays a central role to coordinate myeloid differentiation and growth arrest. C/EBPα is mutated in approximately 9% of AML; these mutations take place either in C or N terminal domains of the protein, although there are several familial cases of AML where both types of mutations have been found. We use C and/or N terminal C/EBPα mutations from one case of sporadic AML to investigate the role of each mutation in leukemic transformation (Smith et al., 2004, N Engl J Med 351, 2403–2407). Human lineage negative (Lin-) umbilical cord blood were transduced with lentiviral vectors carrying the wild type C/EBPα (WT), N terminal mutated C/EBPα (N-ter) or N and C terminal mutated (NC-ter) C/EBPα cloned from this sporadic case of AML. We observed differences in proliferation of transduced Lin- in vitro: WT C/EBPα expression resulted in G0 cell cycle arrest causing a progressive extinction of the transduced cells overtime; N-ter cells showed a higher proliferative advantage over untransduced cells. The NC-ter CEBPα cells like untransduced cells kept their levels throughout culture. Furthermore, when induced into myeloid differentiation in vitro, WT C/EBPα cells were mainly inducing fully mature granulocytes whereas N-ter C/EBPα was not able to induce terminal granulocytic differentiation; in contrast NC-ter C/EBPα did not increase myeloid differentiation. Additionally, their ability to form Colony Forming Units (CFUs) in primary, secondary and tertiary replating was also tested: WT transduced cells gave rise to few primary CFUs; contrary, N and NC-ter could generate both primary and secondary CFUs, but only NC-ter cells were able to produce CFUs in tertiary replating, indicating its ability to maintain undifferentiated hematopoietic progenitors in vitro. These results were confirmed using Long-Term Culture Initiating Cells (LTC-IC) where the NC-ter mutated cells showed the highest LTC-IC after 5 weeks. Finally, in vivo transplantation in NOD/SCID/β2mnull indicated that NC-ter mutated cells engraft better than WT and N-ter 8 week post- transplant. Serial transplantation experiments are underway to evaluate their self-renewal capacity. Our results confirmed some known functions of WT C/EBPα in human hematopoiesis, such as inducing myeloid differentiation and cell cycle arrest. On the other hand, we showed new functions for the C/EBPα mutants. The N-ter C/EBPα mutation caused an increase in cell proliferation and blockage of terminal granulocytic differentiation, whereas the NC-ter C/EBPα mutation increased the self-renewal capacity of progenitor/stem cells without having an influence on myeloid differentiation. This work provides further insight into the mechanisms by which different C/EBPα mutations induce AML.


2020 ◽  
Vol 58 (2) ◽  
pp. 199-210
Author(s):  
Tingting Shi ◽  
Jian Gong ◽  
Koji Fujita ◽  
Noriko Nishiyama ◽  
Hisakazu Iwama ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 494
Author(s):  
Lan Wang ◽  
Yun Huang ◽  
Cui-hong Huang ◽  
Jian-chen Yu ◽  
Ying-chun Zheng ◽  
...  

Ascomylactam A was reported for the first time as a new 13-membered-ring macrocyclic alkaloid in 2019 from the mangrove endophytic fungus Didymella sp. CYSK-4 from the South China Sea. The aim of our study was to delineate the effects of ascomylactam A (AsA) on lung cancer cells and explore the antitumor molecular mechanisms underlying of AsA. In vitro, AsA markedly inhibited the cell proliferation with half-maximal inhibitory concentration (IC50) values from 4 to 8 μM on six lung cancer cell lines, respectively. In vivo, AsA suppressed the tumor growth of A549, NCI-H460 and NCI-H1975 xenografts significantly in mice. Furthermore, by analyses of the soft agar colony formation, 5-ethynyl-20-deoxyuridine (EdU) assay, reactive oxygen species (ROS) imaging, flow cytometry and Western blotting, AsA demonstrated the ability to induce cell cycle arrest in G1 and G1/S phases by increasing ROS generation and decreasing of Akt activity. Conversely, ROS inhibitors and overexpression of Akt could decrease cell growth inhibition and cell cycle arrest induced by AsA. Therefore, we believe that AsA blocks the cell cycle via an ROS-dependent Akt/Cyclin D1/Rb signaling pathway, which consequently leads to the observed antitumor effect both in vitro and in vivo. Our results suggest a novel leading compound for antitumor drug development.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Sun ◽  
Hui-Juan Xu ◽  
Yan-Xia Zhao ◽  
Ling-Zhen Wang ◽  
Li-Rong Sun ◽  
...  

Crocin is a carotenoid of the saffron extract that exhibits antitumor activity against many human tumors. However, the effects of crocin on HL-60 cells in vivo have not been evaluated. This study aimed to examine the effects of crocin on HL-60 cells in vitro and in vivo and investigate the underlying mechanisms. HL-60 cells were treated by crocin, and cell proliferation, apoptosis, and cell cycle profiles were examined by MTT assay, AO/EB staining, and flow cytometry, respectively. Furthermore, HL-60 cells were xenografted into nude mice and treated by crocin, the tumor weight and size were calculated, and the expression of Bcl-2 and Bax in xenografts was detected by immunohistochemical staining. The results showed that crocin (0.625–5 mg/mL) inhibited HL-60 cell proliferation and induced apoptosis and cell cycle arrest at G0/G1 phase, in a concentration and time-dependent manner. In addition, crocin (6.25, 25 mg/kg) inhibited the tumor weight and size of HL-60 xenografts in nude mice, inhibited Bcl-2 expression, and increased Bax expression in xenografts. In summary, crocin inhibits the proliferation and tumorigenicity of HL-60 cells, which may be mediated by the induction of apoptosis and cell cycle arrest and the regulation of Bcl-2 and Bax expression.


Sign in / Sign up

Export Citation Format

Share Document