scholarly journals Aspirin inhibits cholangiocarcinoma cell proliferation via cell cycle arrest in vitro and in vivo

2020 ◽  
Vol 58 (2) ◽  
pp. 199-210
Author(s):  
Tingting Shi ◽  
Jian Gong ◽  
Koji Fujita ◽  
Noriko Nishiyama ◽  
Hisakazu Iwama ◽  
...  
2005 ◽  
Vol 25 (12) ◽  
pp. 4993-5010 ◽  
Author(s):  
Xiaoqi Liu ◽  
Chin-Yo Lin ◽  
Ming Lei ◽  
Shi Yan ◽  
Tianhua Zhou ◽  
...  

ABSTRACT Experiments from several different organisms have demonstrated that polo-like kinases are involved in many aspects of mitosis and cytokinesis. Here, we provide evidence to show that Plk1 associates with chaperonin-containing TCP1 complex (CCT) both in vitro and in vivo. Silencing of CCT by use of RNA interference (RNAi) in mammalian cells inhibits cell proliferation, decreases cell viability, causes cell cycle arrest with 4N DNA content, and leads to apoptosis. Depletion of CCT in well-synchronized HeLa cells causes cell cycle arrest at G2, as demonstrated by a low mitotic index and Cdc2 activity. Complete depletion of Plk1 in well-synchronized cells also leads to G2 block, suggesting that misfolded Plk1 might be responsible for the failure of CCT-depleted cells to enter mitosis. Moreover, partial depletion of CCT or Plk1 leads to mitotic arrest. Finally, the CCT-depleted cells reenter the cell cycle upon reintroduction of the purified constitutively active form of Plk1, indicating that Plk1 might be a CCT substrate.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xinchen Yang ◽  
Shikun Yang ◽  
Jinhua Song ◽  
Wenjie Yang ◽  
Yang Ji ◽  
...  

AbstractGrowing evidence demonstrates that MicroRNAs (miRNAs) play an essential role in contributing to tumor development and progression. However, the underlying role and mechanisms of miR-23b-5p in hepatocellular carcinoma (HCC) formation remain unclear. Our study showed that miR-23b-5p was downregulated in the HCC tissues and cell lines, and lower expression of miR-23b-5p was associated with more severe tumor size and poorer survival. Gain- or loss-of-function assays demonstrated that miR-23b-5p induced G0/G1 cell cycle arrest and inhibited cell proliferation both in vitro and in vivo. qRT-PCR, western blot and luciferase assays verified that Mammalian transcription factor Forkhead Box M1 (FOXM1), upregulated in HCC specimens, was negatively correlated with miR-23b-5p expression and acted as a direct downstream target of miR-23b-5p. In addition, miR-23b-5p could regulate cyclin D1 and c-MYC expression by directly targeting FOXM1. Further study revealed that restoration of FOXM1 neutralized the cell cycle arrest and cell proliferation inhibition caused by miR-23b-5p. Taken together, our findings suggest that miR-23b-5p acted as a tumor suppressor role in HCC progression by targeting FOXM1 and may serve as a potential novel biomarker for HCC diagnosis and prognosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1343-1343
Author(s):  
Oscar Quintana-Bustamante ◽  
S. Lan-Lan Smith ◽  
Jude Fitzgibbon ◽  
Dominique Bonnet

Abstract Acute Myeloid Leukemia (AML) is characterized by an abnormal hematopoietic differentiation and uncontrolled cell proliferation. Mutations in several transcription factors (TFs) have been implicated in the development of leukemia. One of these TFs is CCAAT/enhancer-binding protein-α (C/EBPα). In normal hematopoiesis, C/EBPα plays a central role to coordinate myeloid differentiation and growth arrest. C/EBPα is mutated in approximately 9% of AML; these mutations take place either in C or N terminal domains of the protein, although there are several familial cases of AML where both types of mutations have been found. We use C and/or N terminal C/EBPα mutations from one case of sporadic AML to investigate the role of each mutation in leukemic transformation (Smith et al., 2004, N Engl J Med 351, 2403–2407). Human lineage negative (Lin-) umbilical cord blood were transduced with lentiviral vectors carrying the wild type C/EBPα (WT), N terminal mutated C/EBPα (N-ter) or N and C terminal mutated (NC-ter) C/EBPα cloned from this sporadic case of AML. We observed differences in proliferation of transduced Lin- in vitro: WT C/EBPα expression resulted in G0 cell cycle arrest causing a progressive extinction of the transduced cells overtime; N-ter cells showed a higher proliferative advantage over untransduced cells. The NC-ter CEBPα cells like untransduced cells kept their levels throughout culture. Furthermore, when induced into myeloid differentiation in vitro, WT C/EBPα cells were mainly inducing fully mature granulocytes whereas N-ter C/EBPα was not able to induce terminal granulocytic differentiation; in contrast NC-ter C/EBPα did not increase myeloid differentiation. Additionally, their ability to form Colony Forming Units (CFUs) in primary, secondary and tertiary replating was also tested: WT transduced cells gave rise to few primary CFUs; contrary, N and NC-ter could generate both primary and secondary CFUs, but only NC-ter cells were able to produce CFUs in tertiary replating, indicating its ability to maintain undifferentiated hematopoietic progenitors in vitro. These results were confirmed using Long-Term Culture Initiating Cells (LTC-IC) where the NC-ter mutated cells showed the highest LTC-IC after 5 weeks. Finally, in vivo transplantation in NOD/SCID/β2mnull indicated that NC-ter mutated cells engraft better than WT and N-ter 8 week post- transplant. Serial transplantation experiments are underway to evaluate their self-renewal capacity. Our results confirmed some known functions of WT C/EBPα in human hematopoiesis, such as inducing myeloid differentiation and cell cycle arrest. On the other hand, we showed new functions for the C/EBPα mutants. The N-ter C/EBPα mutation caused an increase in cell proliferation and blockage of terminal granulocytic differentiation, whereas the NC-ter C/EBPα mutation increased the self-renewal capacity of progenitor/stem cells without having an influence on myeloid differentiation. This work provides further insight into the mechanisms by which different C/EBPα mutations induce AML.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Sun ◽  
Hui-Juan Xu ◽  
Yan-Xia Zhao ◽  
Ling-Zhen Wang ◽  
Li-Rong Sun ◽  
...  

Crocin is a carotenoid of the saffron extract that exhibits antitumor activity against many human tumors. However, the effects of crocin on HL-60 cells in vivo have not been evaluated. This study aimed to examine the effects of crocin on HL-60 cells in vitro and in vivo and investigate the underlying mechanisms. HL-60 cells were treated by crocin, and cell proliferation, apoptosis, and cell cycle profiles were examined by MTT assay, AO/EB staining, and flow cytometry, respectively. Furthermore, HL-60 cells were xenografted into nude mice and treated by crocin, the tumor weight and size were calculated, and the expression of Bcl-2 and Bax in xenografts was detected by immunohistochemical staining. The results showed that crocin (0.625–5 mg/mL) inhibited HL-60 cell proliferation and induced apoptosis and cell cycle arrest at G0/G1 phase, in a concentration and time-dependent manner. In addition, crocin (6.25, 25 mg/kg) inhibited the tumor weight and size of HL-60 xenografts in nude mice, inhibited Bcl-2 expression, and increased Bax expression in xenografts. In summary, crocin inhibits the proliferation and tumorigenicity of HL-60 cells, which may be mediated by the induction of apoptosis and cell cycle arrest and the regulation of Bcl-2 and Bax expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kuangzheng Li ◽  
Xiaosheng Fan ◽  
Ziyi Yan ◽  
Jia Zhan ◽  
Fangyun Cao ◽  
...  

Abstract Background The implication of circular RNAs (circRNAs) in human cancers has aroused much concern. In this study, we investigated the function of circ_0000745 and its potential functional mechanisms in oral squamous cell carcinoma (OSCC) to further understand OSCC pathogenesis. Methods The expression of circ_0000745, miR-488 and cyclin D1 (CCND1) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation capacity was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined by flow cytometry assay. The protein levels of CCND1, PCNA, Cleaved-caspase 3 and HuR were detected by western blot. Animal study was conducted to identify the role of circ_0000745 in vivo. The targeted relationship was verified by dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. Results The expression of circ_0000745 was increased in OSCC tissues and cells. Circ_0000745 downregulation inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, as well as blocked tumor growth in vivo. MiR-488 was a target of circ_0000745, and circ_0000745 downregulation suppressed OSCC development by enriching miR-488. Besides, circ_0000745 regulated CCND1 expression by targeting miR-488. In addition, circ_0000745 regulated CCND1 expression by interacting with HuR protein. CCND1 knockdown also inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, and CCND1 overexpression recovered the inhibitory effects on OSCC cell malignant behaviors caused by circ_0000745 downregulation. Conclusions Circ_0000745 regulated the expression of CCND1 partly by acting as miR-488 sponge and interacting with HuR protein, thus promoting the progression of OSCC.


2021 ◽  
Author(s):  
Xia Yan ◽  
Dan Wang ◽  
Liping Zhuang ◽  
Peng Wang ◽  
Zhiqiang Meng ◽  
...  

Abstract Background: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer, and its 5-year survival rate is less than 10%. Fibroblast growth factor receptor (FGFR) changes have been observed in 6%-50% of ICC patients, and patients with FGFR mutations have been shown to have more inert tumour biological activity than patients with wild-type FGFRs. Thus, as a pan-FGFR inhibitor, lenvatinib is supposed to play an anti-tumour role in ICC. However, no relevant experiments have been reported.Methods: Patients derived xenograft (PDX) model and cell line derived xenograft (CDX) model were both used for the in vivo study. For in vivo work, ICC cell lines were applied to analyse the effect of Lenvatinib on cell proliferation, cell cycle progression, apoptosis, and the molecular mechanism.Reaults: In the present study, we found that lenvatinib dramatically hindered in vivo tumor growth in ICC patient-derived xenograft models. In addition, by using in vitro experiments in ICC cell lines, we found that lenvatinib dose- and time-dependently inhibited the proliferation of ICC cells and induced cell cycle arrest in the G0/G1 phase. Transcriptional profiling analysis further applied indicated that lenvatinib might inhibit cell proliferation through the induction of cell-cycle arrestment via activating of Gadd45a, it was evidenced by that the knockout of Gadd45a significantly attenuated the cycle arrest induced by lenvatinib, as well as the inhibitory effect of lenvatinib on ICC.Conclusion: Our work firstly found that lenvatinib exerted excellent antitumor effect on ICC, mainly via inducing Gadd45a mediated cell cycle arrest. Our work provides evidence and a rationale for the future use of lenvatinib in the treatment of ICC.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Liqun Yang ◽  
Qian Lei ◽  
Lin Li ◽  
Jie Yang ◽  
Zhen Dong ◽  
...  

Abstract Background Epigenetic regulations play pivotal roles in tumorigenesis and cancer development. Disruptor of telomeric silencing-1-like (DOT1L), also known as KMT4, is the only identified histone methyltransferase that catalyzes the mono-, di-, and tri-methylation of lysine 79 histone 3 (H3K79). However, little is known about the effect of H3K79 methylation on the modulation of colorectal cancer (CRC) development. Methods DOT1L expression profiles in different subgroups of CRC tissues and its clinical significances were analyzed from some online datasheets. DOT1L in CRC cell lines was silenced by either lentivirus-mediated knockdown or inhibited by its specific inhibitor, EPZ004777. Then cell proliferation was detected by MTT assay, BrdU assay, and soft agar assay; cell cycle was detected by cytometry; and tumorigenicity was detected by using nude mice xenograft models. Clinical co-expression was analyzed between DOT1L and c-Myc. Chromatin immunoprecipitation (ChIP) assay was used to determine whether the translation of c-Myc was epigenetically regulated by H3K79me2 induced by DOT1L. c-Myc overexpression was used to rescue the cell cycle arrest and tumor growth induced by DOT1L silencing or inhibition in CRC. Results We found that DOT1L was highly expressed in colorectal cancer and was negatively related to the prognosis of patients with CRC. Silencing or inhibition of DOT1L blocked cell proliferation, BrdU incorporation, self-renewal capability in vitro, and tumorigenicity in vivo. Besides, inhibition or silencing of DOT1L also induced cell cycle arrest at S phase, as well as decreased the expression of CDK2 and Cyclin A2. Furthermore, in the clinical databases of CRC, we found that the expression of DOT1L was positively correlated with that of c-Myc, a major regulator in the upstream of cell cycle–related factors. Besides, c-Myc expression was downregulated after DOT1L knockdown and c-Myc restoration rescued decrease of cell proliferation, BrdU corporation, self-renewal capability, cell cycle progression in vitro and tumorigenicity in vivo induced by DOT1L silencing. Then we found that H3K79 methylation was decreased after DOT1L knockdown. ChIP assay showed that H3K79me2 was enriched on the – 682~+ 284 region of c-Myc promoter, and the enrichment was decreased after DOT1L inhibition. Conclusions Our results show that DOT1L epigenetically promotes the transcription of c-Myc via H3K79me2. DOT1L silencing or inhibition induces cell cycle arrest at S phase. DOT1L is a potential marker for colorectal cancer and EPZ004777 may be a potential drug for the treatment of colorectal cancer.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 835-835 ◽  
Author(s):  
Lynsey McKenzie ◽  
Natalia Martinez-Soria ◽  
Julia Draper ◽  
Sirintra Nakjang ◽  
Helen J Blair ◽  
...  

Abstract The translocation t(8;21) is the most common chromosomal rearrangement in AML and generates the RUNX1/ETO fusion protein. RUNX1/ETO is required for maintaining the leukaemic phenotype influencing both leukaemic clonogenicity and proliferation and is traditionally thought of as a transcriptional repressor through its actions with histone deacetylases and transcriptional co-repressors. Intriguingly our RNAi experiments have also identified many RUNX1/ETO target genes that are transcriptionally upregulated by this fusion protein. To delve deeper into the involvement of these upregulated genes in RUNX1/ETO driven leukaemia, targeted RNAi screens were performed both in vitro and in vivo, directed at genes found directly bound by RUNX1/ETO and that were found differentially expressed upon RUNX1/ETO knockdown. For the RNAi screens, we used a doxycycline (dox)-inducible lentiviral RNAi library covering each gene with 3 shRNAs. We transduced two t(8;21)-positive AML cell lines, Kasumi-1 and SKNO-1, with this library and performed parallel screens employing colony formation and long-term suspension culture assays in the in vitro arm, and intrafemoral xenotransplantation of immunodeficient NSG mice for the in vivo arm. For comparative purposes, both arms of the RNAi screen were performed in the presence and absence of dox. DNA was isolated throughout both screens and was analysed by Next Generation Sequencing (NGS). Comparison of the changes in level of integrated shRNA coding sequences between dox and no dox groups were made using DESEQ and those genes that are required for RUNX1/ETO driven leukaemia identified. As expected, RUNX1/ETO shRNA constructs diminished upon induction of shRUNX1/ETO expression by dox, therefore implicating RUNX1/ETO dependency in cell survival. Furthermore non-targeting control shRNA (shNTC) levels were unaffected. Out of the many hits identified (which include previously reported hits such as Pontin (RUBVL1), SKP2 and KIT, Cyclin D2 (CCND2) stood out significantly, since levels of shCCND2 were depleted in all dox samples from both arms of the screen. CCND2 is a cell cycle regulator whose activity is dependent on its binding to CDK4/6 in G1 phase. Phosphorylation of Rb (Retinoblastoma), by CDK4/6-CCND2, uncouples Rb from E2F allowing transcription of essential S phase genes. Here we show CCND2 knockdown downregulates both cell proliferation and colony formation in t(8;21) positive cells by causing G1 phase cell cycle arrest via a reduction in Rb phosphorylation, which is a phenotype copied by our RUNX1/ETO knockdown. Moreover, inhibition of CDK4/6-CCND2 by palbociclib (PD-0332991) in t(8;21) positive cells similarly reduces cell proliferation and colony formation via a G1 cell cycle arrest. Interestingly, primary CD34+ human stem/progenitor cells (HSPCs) containing an activated form of KIT (N822K) and the RUNX1/ETO 9a isoform are likewise responsive to palbociclib treatment. In addition to in vitro studies, palbociclib was tested in vivo in two separate experimental models: firstly, mice were intravenously injected with murine CD34+ cKit+ HSPCs expressing the RUNX1/ETO9a isoform and secondly, immunodeficient mice were intrahepatically injected with Kasumi-1. Mice were dosed with palbociclib upon confirmation of engraftment. Engraftment was detected using bioluminescence and survival rates recorded. Both studies showed significant increased survival with palbociclib treatment with the first giving an increased median survival of 59 versus 29 days (p<0.005) and the second giving a median survival of 87 and 67 days for palbociclib treated and control mice (p<0.005), respectively. Finally, Gene Set Enrichment Analysis (GSEA) shows the correlations between palbociclib treatment, CCND2 knockdown and RUNX1/ETO knockdown and shows common gene sets shared between them and other gene sets which include those targeted by MYC and E2F. Interestingly, gene sets that only correlate with knockdown of CCND2 and RUNX1/ETO and evidentially unaffected by CDK4/6 activity will be of interest, in order to target other RUNX1/ETO dependent proteins and pathways alongside of CDK4/6 inhibition. We are currently investigating the use of palbociclib with other drugs in order to develop new drug combinations with reduced toxicity and minimal risk of developing resistance. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document