P.0869 Oxidized cell-free DNA regulates gene expression of the main signaling pathways in brain cells

2021 ◽  
Vol 53 ◽  
pp. S635
Author(s):  
A. Filev ◽  
P. Umriukhin ◽  
V. Tabakov ◽  
S. Kostyuk ◽  
V. Pisarev
2021 ◽  
Vol 43 (3) ◽  
pp. 1583-1591
Author(s):  
Anton D. Filev ◽  
Svetlana V. Kostyuk ◽  
Pavel E. Umriukhin ◽  
Vladimir M. Pisarev

Cell-free DNA (cfDNA) is liberated and accumulated in neural tissue due to cell damage. The oxidative and nitrosative stress in the brain that accompanies various pathological conditions has been shown to increase the oxidation of cellular and cell-free DNA. Whether the high concentration of non-oxidized and oxidized cfDNA may affect the transcriptome response of brain cells has not been studied. In the current work, we studied whether cfDNA fragments affect several key pathways, including neurogenesis, at the level of gene expression in brain cells. In the study, primary rat cerebellum cell cultures were used to assess the effects of oxidized and non-oxidized cfDNA on the expression of 91 genes in brain cells. We found that only oxidized cfDNA, not non-oxidized cfDNA, significantly altered the transcription in brain cells in 3 h. The pattern of change included all 10 upregulated genes (S100A8, S100A9, S100b, TrkB, Ngf, Pink1, Aqp4, Nmdar, Kcnk2, Mapk1) belonging to genes associated with neurogenesis and neuroplasticity. The expression of inflammatory and apoptosis genes, which oppose neurogenesis, decreased. The results show that the oxidized form of cfDNA positively regulates early gene expression of neurogenesis and neuroplasticity. At the same time, the question of whether chronic elevation of cfDNA concentration alters brain cells remains unexplored.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 148-148
Author(s):  
Martin Sjöström ◽  
Shuang Zhao ◽  
Eric Jay Small ◽  
Yuhong Ning ◽  
Corinne Maurice-Dror ◽  
...  

148 Background: 5-hydroxymethylcytosine (5hmC) is an epigenetic modification which regulates gene expression and is associated with active transcription. The optimization of 5hmC sequencing in cell-free DNA (cfDNA) could therefore enable assessment of gene activity through a liquid biopsy. We aimed to investigate the 5hmC landscape of metastatic castration-resistant prostate cancer (mCRPC) and to evaluate the potential of 5hmC modifications in cfDNA as biomarkers of outcome in mCRPC patients. Methods: Genome-wide 5hmC modifications were analyzed with a low-input whole-genome 5hmC sequencing method based on selective chemical labeling in DNA from 93 mCRPC tissue biopsies previously profiled with whole-genome sequencing (WGS), RNA-sequencing and whole-genome bisulfite sequencing (WGBS). In addition, we analyzed 64 cell-free DNA (cfDNA) samples, from men with mCRPC before first-line abiraterone or enzalutamide, with both 5hmC sequencing and a conventional targeted ctDNA panel assessing common genomic alterations. Results: In mCRPC tissue samples, 5hmC enrichment was more strongly associated with gene expression than promoter methylation or copy number. Among cancer hallmark pathways, the androgen response genes had the strongest association between 5hmC and gene expression, suggesting a disease specific marking of gene activation. 5hmC patterns in cfDNA could be used to estimate the circulating tumor DNA fraction (ct-fraction), which was prognostic for overall survival (tertiles of ct-fraction, HR = 1.6 95%CI 1.1-2.3, p = 0.007). Further, 5hmC levels were indicative of gain of oncogene activity (such as AR, MYC, and PIK3CA) and loss of tumor suppressor gene activity (such as RB1, TP53 and BRCA2). The number of alterations, by 5hmC levels, of common drivers of mCRPC was prognostic for overall survival, also after adjusting for ct-fraction (adjusted p = 0.00001), and the prognostic value of common alterations detected by 5hmC sequencing versus conventional targeted ctDNA sequencing was similar. Finally, 5hmC levels in cfDNA of genes not significantly altered by copy number gain or loss (and thus not routinely included in targeted ctDNA sequencing assays), such as TOP2A and EZH2, identified a high-risk subgroup of mCRPC, which was highly prognostic for overall survival independent of ct-fraction (adjusted HR = 1.8 95%CI 1.2-2.8, p = 0.007). Conclusions: 5hmC in mCRPC tissue demonstrated an association with gene expression that was highest for prostate cancer driver genes, highlighting the ability to track disease-specific biology. 5hmC in cfDNA from men with mCRPC can be used to estimate the ct-fraction of the sample, infer activity gain and loss of common drivers of mCRPC, and identify high-risk groups of mCRPC based on alterations not commonly detected with conventional ctDNA sequencing, showing its potential as a liquid biomarker. Further studies are aimed at optimizing and validating 5hmC-based biomarkers in larger cohorts.


2019 ◽  
Author(s):  
John A. St John ◽  
Erik Gafni ◽  
Brandon White ◽  
Ajay Kannan ◽  
Loren Hansen ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. S387
Author(s):  
E. Depasquale ◽  
S. Hall ◽  
M. Crespo-Leiro ◽  
A. Kao ◽  
J. Teuteberg ◽  
...  

Author(s):  
Anton Filev ◽  
Vladimir Pisarev ◽  
Vyacheslav Tabakov ◽  
Natalia Veiko ◽  
Pavel Uriukhin ◽  
...  

2014 ◽  
Vol 22 (6) ◽  
pp. 679-684 ◽  
Author(s):  
Maryam Shahrabi Farahani ◽  
Shirin Shahbazi ◽  
Soheila Amini Moghaddam ◽  
Reza Mahdian

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 672-672
Author(s):  
Mahya Mehrmohamadi ◽  
Mohammad S Esfahani ◽  
Joanne Soo ◽  
Florian Scherer ◽  
Joseph G Schroers-Martin ◽  
...  

Abstract Background Diffuse large B-cell lymphomas (DLBCL) can be divided into subtypes that relate to their cell-of-origin: germinal center B-cell (GCB) and activated B-cell (ABC). These clinically distinct subtypes were originally discovered based on their unique transcriptional signatures, but they also harbor distinct genetic aberrations and epigenetic profiles. We previously showed the utility of genetic mutations in circulating tumor DNA (ctDNA) for DLBCL subtyping using cancer personalized profiling by deep sequencing (CAPP-Seq) [Scherer et al., Sci Transl Med 2016, Newman et al., Nat Med 2014]. Here, we assess epigenetic information encoded in cell-free DNA (cfDNA) for addressing this distinction. Methods We extended recent observations revealing nucleosome depletion at transcription start sites (TSS) of highly expressed genes within cfDNA [Snyder et al. 2016 Cell and Ulz et al. 2016 Nat Genetics]. Specifically, to overcome the inherent sensitivity limitations of cfDNA whole genome sequencing (WGS), we focused on 32 genes differentially expressed between DLBCL subtypes (as well as 70 control genes). We targeted 2 kb regions flanking each TSS for these genes by CAPP-Seq [Newman et al. 2014 Nature Med]. Plasma samples were collected from 41 individuals and cfDNA subjected to ultra-deep sequencing (~4000x) by CAPP-Seq. DLBCL cases were labeled as either ABC or GCB based on gene expression in tumor biopsies. Results We observed significant heterogeneity in the TSS profiles of individual genes. Despite this variation, many genes in our targeted panel exhibited discriminatory profiles. For example, CD20 (MS4A1), reliably distinguished DLBCL cases from control subjects in nucleosome depletion at the TSS as expected (p= 1.5e-05, Fig1a). Remarkably, when considering 32 genes differentially expressed between DLBCL subtypes, we observed significant differences in their TSS profiles in plasma from patients with GCB vs ABC DLBCL (p=0.0002, Fig 1b). For the majority of the subtype-specific genes, the pattern of nucleosome depletion at the TSS was consistent with expected expression (Fig 1b). Specifically, genes typically over-expressed in GCB DLBCL (e.g., CD10/MME, LMO2, SERPINA9), had significantly more TSS nucleosome depletion in cfDNA from GCB-like DLBCL patients. Conversely, we observed significantly more nucleosome depletion in cfDNA of ABC DLBCL patients at the TSS of genes known to be transcriptionally more active in ABC DLBCL (e.g., IRF4, PIM1, CCND2 and IL16). When aggregating the epigenetic profiles across these genes into a single cell-of-origin score, we observed significant stratification of patients with distinct DLBCL subtypes (Fig 1c, p=0.008). Across the cohort, this epigenetic cell-of-origin score from cfDNA showed significant correlation (Spearman rho=0.67, p=0.05) with a score derived from somatic mutations genotyped from ctDNA [Scherer et al. 2016 Sci Transl Med]. Conclusions Lymphoma subtypes exhibit distinct chromatin accessibility profiles that can be captured by targeted cell free DNA profiling, and that can serve as surrogates for expected gene expression differences. These epigenetic features can be used to noninvasively classify DLBCL molecular subtypes using blood plasma and should be readily extensible to other cancer classification problems. Extension of this approach to other epigenetic features could serve to further refine potential applications. Figure legend. Figure 1. (A) Sequencing coverage around the TSS of the B-cell antigen CD20 (MS4A1) is shown for three representative DLBCL patients (red) and three normal controls (gray). The boxplot shows summary of normalized depth across all samples (n=10 DLBCL, n=31 control). (B) The y-axis shows 32 genes with known ABC-favoring (blue) and GCB-favoring (orange) expression. The x-axis shows a delta score defined as log2( mean normalized depth across GCB samples - mean normalized depth across GCB samples). (C) Boxplot of the GCBness score obtained by subtracting the overall depth around the TSSs of a set of GCB-genes from the same metric for a set of ABC-genes. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document