Hydrophobic Lignin/Polyurethane Composite Foam: An Eco-friendly and Easily Reusable Oil Sorbent

2022 ◽  
pp. 110971
Author(s):  
Uiseok Hwang ◽  
Bumhee Lee ◽  
Byeonghun Oh ◽  
Hyun Su Shin ◽  
Su Sam Lee ◽  
...  
2013 ◽  
Vol 315 ◽  
pp. 872-878 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali ◽  
Ahmad Mujahid Ahmad Zaidi ◽  
Prasath Kesavan Prabagaran

Foam-filled enclosures are very common in structural crashworthiness to increase energy absorption. However, very less research has been targeted on potential use of natural/recycled material reinforced foam-filled tubes. Therefore, an experimental investigation was performed to quantify energy absorption capacity of polyurethane (PU) composite foam-filled circular steel tubes under quasi-static axial loading. The thickness of the tubes was varied from 1.9, 2.9 and 3.6 mm. The tubes were filled with PU composite foam. The PU composite foam was processed with addition of kenaf plant fiber and recycled rubber particles that were refined at 80 mesh particulates into PU system. The density of PU resin was varied from 100, 200 and 300 kgm-3. The PU composite foam-filled tubes were crushed axially at constant speed in a universal testing machine and their energy absorption was characterized from the resulting load-deflection data. Results indicate that PU composite foam-filled tubes exhibited better energy absorption capacity than those PU foam-filled tubes and its respective empty tubes. Interaction effect between the tube and the foam and incorporation of filler into PU system led to an increase in mean crushing load compared to that of the unfilled PU foam or tube itself. Relatively, progressively collapse modes were observed for all tested tubes. Findings suggested that composite foam-filled tubes could be used as crashworthy member.


2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Mohd Haziq Dzulkifli ◽  
Mohd Yazid Yahya ◽  
Farhana Shakira Md Akhir ◽  
Rohah Abd Majid

Polyurethane (PU) foams are widely used today in automotive and as insulation system. Due to environmental issues, efforts have been made to replace petrochemical polyol with natural-based polyol in PU foam production, without sacrificing any properties. This study aims as to produce palm oil-based polyurethane composite foam for load bearing purposes. Palm oil-based polyol (POP) was reacted with polymeric 4,4-diphenylmethane diisocyanate (p-MDI) with water as blowing agent and silicone surfactant to produce rigid PU foams. The foams obtained were varied by NCO:OH ratios and water content and characterized for their morphology and compressive strength. Scanning electron micrographs (SEM) indicated the cells within the obtained foams are closed cells. Compressive strength of obtained foams shows considerable improvement but only up to NCO:OH ratio of 1:1.35. 


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1289 ◽  
Author(s):  
Zhong ◽  
Ding ◽  
Li ◽  
Shen ◽  
Yadav ◽  
...  

Flexible pressure sensors have attracted tremendous research interests due to their wide applications in wearable electronics and smart robots. The easy-to-obtain fabrication and stable signal output are meaningful for the practical application of flexible pressure sensors. The graphene/polyurethane foam composites are prepared to develop a convenient method for piezo-resistive devices with simple structure and outstanding sensing performance. Graphene oxide was prepared through the modified Hummers method. Polyurethane foam was kept to soak in the obtained graphene oxide aqueous solution and then dried. After that, reduced graphene oxide/polyurethane composite foam has been fabricated under air phase reduction by hydrazine hydrate vapor. The chemical components and micro morphologies of the prepared samples have been observed by using FT-IR and scanning electron microscopy (SEM). The results predicted that the graphene is tightly adhered to the bare surface of the pores. The pressure sensing performance has been also evaluated by measuring the sensitivity, durability, and response time. The results indicate that the value of sensitivity under the range of 0–6 kPa and 6–25 kPa are 0.17 kPa−1 and 0.005 kPa−1, respectively. Cycling stability test has been performed 30 times under three varying pressures. The signal output just exhibits slight fluctuations, which represents the good cycling stability of the pressure sensor. At the same stage, the response time of loading and unloading of 20 g weight turned out to be about 300 ms. These consequences showed the superiority of graphene/polyurethane composite foam while applied in piezo-resistive devices including wide sensitive pressure range, high sensitivity, outstanding durability, and fast response.


1995 ◽  
Vol 55 (2) ◽  
pp. 283-287 ◽  
Author(s):  
Feifeng He ◽  
Mitsuru Omoto ◽  
Toshihiro Yamamoto ◽  
Hideo Kise

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1098 ◽  
Author(s):  
Francisco Claudivan da Silva ◽  
Helena P. Felgueiras ◽  
Rasiah Ladchumananandasivam ◽  
José Ubiragi L. Mendes ◽  
Késia Karina de O. Souto Silva ◽  
...  

A polyurethane (PU)-based eco-composite foam was prepared using dog wool fibers as a filler. Fibers were acquired from pet shops and alkaline treated prior to use. The influence of their incorporation on the PU foams’ morphological, thermal, and mechanical properties was investigated. The random and disorganized presence of the microfibers along the foam influence their mechanical performance. Tensile and compression strengths were improved with the increased amount of dog wool microparticles on the eco-composites. The same occurred with the foams’ hydration capacity. The thermal capacity was also slightly enhanced with the incorporation of the fillers. The fillers also increased the thermal stability of the foams, reducing their dilatation with heating. The best structural stability was obtained using up to 120 °C with a maximum of 15% of filler. In the end, the dog wool waste was rationally valorized as a filler in PU foams, demonstrating its potential for insulation applications, with a low cost and minimal environmental impact.


Sign in / Sign up

Export Citation Format

Share Document