The Effects of Bariatric Surgery on Pharmacokinetics of Antidepressants: A Systematic Review

2017 ◽  
Vol 41 (S1) ◽  
pp. S232-S233 ◽  
Author(s):  
L. de Jonge ◽  
S. Petrykiv ◽  
J. Fennema ◽  
M. Arts

IntroductionMorbid obesity (BMI ≥ 35) has been associated with mood and anxiety disorders. Regular use of antidepressants is common among patients who are candidate for bariatric surgery. The Roux-en-Y gastric bypass (RYGB) is one of the most common techniques used in bariatric surgery for reducing nutrient absorption. This type of surgery may however result in major changes in drug absorption.Objectives and aimsTo report and discuss the consequences of bariatric surgery on changes in antidepressant drug absorption.MethodsWe present all published in vitro and in vivo studies on antidepressant drug absorption after bariatric surgery.ResultsIn vitro studies showed that only bupropion had a significantly increased dissolution in a post-RYGB environment; venlafaxine and citalopram showed no alteration of dissolution; fluoxetine, paroxetine, sertraline, and amitryptiline had an significantly decreased dissolution in a post RYGB environment. Some in-vivo studies reported that only citalopram and escitalopram had an increased dissolution.ConclusionAfter bariatric surgery, special caution is required in patients using antidepressant medication because of the expected changes in drug absorption, nutritional status, and electrolyte balance.Disclosure of interestThe authors have not supplied their declaration of competing interest.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 168 ◽  
Author(s):  
Margherita Falavigna ◽  
Paul Stein ◽  
Gøril Flaten ◽  
Massimiliano di Cagno

Mucosal drug delivery accounts for various administration routes (i.e., oral, vaginal, ocular, pulmonary, etc.) and offers a vast surface for the permeation of drugs. However, the mucus layer which shields and lubricates all mucosal tissues can compromise drugs from reaching the epithelial site, thus affecting their absorption and therapeutic effect. Therefore, the effect of the mucus layer on drug absorption has to be evaluated early in the drug-development phase, prior to in vivo studies. For this reason, we developed a simple, cost-effective and reproducible method employing UV-visible localized spectroscopy for the assessment of the interaction between mucin and drugs with different physicochemical characteristics. The mucin–drug interaction was investigated by measuring the drug relative diffusivity (Drel) in the presence of mucin, and the method was validated by fitting experimental and mathematical data. In vitro permeability studies were also performed using the mucus-covered artificial permeation barrier (mucus–PVPA, Phospholipid Vesicle-based Permeation Assay) for comparison. The obtained results showed that the diffusion of drugs was hampered by the presence of mucin, especially at higher concentrations. This novel method proved to be suitable for the investigation on the extent of mucin–drug interaction and can be successfully used to assess the impact that the mucus layer has on drug absorption.


Author(s):  
VEDAMURTHY JOSHI ◽  
FIRDOS SULTHANA ◽  
DINESHA RAMADAS

Silver nanoparticles (NP) offer many applications in the science and technology. Oral delivery of such tiny particles results in enhanced drug absorption, reduction in dose, and minimize adverse effects. This review focuses on the mainly on the effects in the gastrointestinal tract along with its in vitro and in vivo studies carried on the silver NP. In this review, we compiled some of the extensive research in the field of silver NP, highlighting some of the most recent trends in the area. Search was carried in English language using Science direct, PubMed, and Google scholar search engines. The effects of silver NP on gastrointestinal tract such as absorption, distribution, metabolism, and elimination were compiled in this review. In addition, selected in vitro and in vivo studies related to the same are discussed. The accumulation of silver NP leading to Arginia condition also emphasized in the study. Silver NP and herbal silver NP in oral delivery can be exploited for the further safer and effective treatment.


2016 ◽  
Vol 33 (S1) ◽  
pp. S407-S407
Author(s):  
M. Borsotto ◽  
A. Djillani ◽  
C. Devader ◽  
C. Heurteaux ◽  
J. Mazella

ObjectivesWe previously discovered spadin as a new antidepressant drug concept. Spadin exerts its antidepressant actions on the TREK-1 potassium channel, a new antidepressant (AD) target. We have shown that spadin acts more rapidly in comparison to other ADs. We have pointed out that spadin induced neurogenesis after only 4-day treatments. We have demonstrated that spadin did not display side effects at the cardiac level and on TREK-1 controlled functions such as stroke, epilepsy or pain.ObjectivesWith the final goal to make spadin a drug for human clinic, our objective was to find analogs of spadin demonstrating a better affinity or a better in vivo stability or both.MethodsSeveral analogs of spadin were synthesized. Their ability to block the TREK-1 channel activity were first tested by electrophysiology on HEK293 cells stably transfected with TREK-1 channels. AD effects were measured by using the forced swim test and the novelty suppressed feeding test. Neurogenesis was investigated by measuring the expression level of the synaptic protein PSD-95 in in vitro cultured neurons.ResultsOur data allow us to identify a shortened spadin, called mini-spadin, that displayed the same AD properties as spadin and a 400 fold increase in the TREK-1 affinity. Mini-spadin increased the synaptogenesis marker PSD95 levels after only 24 hours of treatment, suggesting that like spadin, mini-spadin was able to induce neurogenesis and synaptogenesis.ConclusionsEven if further experiments are required, the mini-spadin appears to be more efficient than spadin offering a very promising alternate to spadin as human drug.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document