scholarly journals Single cell transcriptomics of the developing zebrafish lens and identification of putative controllers of lens development

2021 ◽  
pp. 108535
Author(s):  
Dylan Farnsworth ◽  
Mason Posner ◽  
Adam Miller
Keyword(s):  
2020 ◽  
Author(s):  
Dylan Farnsworth ◽  
Mason Posner ◽  
Adam Miller

AbstractThe vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ’s rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos at single cell resolution through five days of development, identifying a number of novel regulators of lens development as potential targets for future functional studies. Our temporospatial expression data address open questions about the function of α-crystallins during lens development and provides the first detailed view of β- and γ-crystallin expression in and outside the lens. We describe subfunctionalization in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, RNA-binding, and transcription factors genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.


Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Author(s):  
Alexander Lind ◽  
Falastin Salami ◽  
Anne‐Marie Landtblom ◽  
Lars Palm ◽  
Åke Lernmark ◽  
...  

2020 ◽  
Vol 26 (10) ◽  
pp. 1644-1653 ◽  
Author(s):  
Wanxin Wang ◽  
Felipe Vilella ◽  
Pilar Alama ◽  
Inmaculada Moreno ◽  
Marco Mignardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document