Dual-tasking impacts gait, cognitive performance, and gaze behavior during walking in a real-world environment in older adult fallers and non-fallers

2021 ◽  
pp. 111342
Author(s):  
Lisa A. Zukowski ◽  
Jaclyn E. Tennant ◽  
Gozde Iyigun ◽  
Carol A. Giuliani ◽  
Prudence Plummer
Author(s):  
Samantha L. Epling ◽  
Graham K. Edgar ◽  
Paul N. Russell ◽  
William S. Helton

Dual-tasking situations are common in military, firefighting, search and rescue, and other high risk operations. Cognitive and physical demands can occur at the same time, but little is known about the specific demands of real world tasks or how they might interfere with one another. It is well known that attempting simultaneous tasks will divide and divert attention, but to what extent? In this experiment, a narrative memory task was paired with an outdoor running task, and as expected, memory task performance declined when participants were asked to run at the same time. It is suggested that more cognitively demanding physical tasks be used within this dual-task paradigm for a better understanding of the human cognitive resource structure, i.e., how and why certain tasks interfere.


2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 816-816
Author(s):  
W Quin Yow ◽  
Tharshini Lokanathan ◽  
Hui-Ching Chen

Abstract There is an increasing interest in using touch-screen devices to conduct cognitive training and collect measurements of cognitive performance. However, older adults often have concerns such as anxiety about using these systems and poor comprehension of language instructions (Czaja & Lee, 2007). Given that Singapore is a multilingual society, we examined the deployment of an age-friendly multi-modal touch-screen platform (a game-based application on a tablet) in a cognitive intervention research. After modification of the platform to include features such as simplified instructions, multi-level prompts with a local accent, and four different instructional languages (including local dialects), participants were less reliant on the researchers and reported fewer difficulties in comprehending the instructions. The integrity and reliability of the data collected improved as a result. In sum, multilingual age-friendly touch-screen platform can be a novel yet effective method to study cognitive interventions in the Asian older adult populations.


Author(s):  
Sidney D’Mello ◽  
Eric Mathews ◽  
Lee McCauley ◽  
James Markham

We studied the characteristics of four commercially available RFID tags such as their orientation on an asset and their position in a three dimensional real world environment to obtain comprehensive data to substantiate a baseline for the use of RFID technology in a diverse supply chain management setting. Using RFID tags manufactured by four different vendors and a GHz Transverse Electromagnetic (GTEM) cell, in which an approximately constant electromagnetic (EM) field was maintained, we characterized the tags based on horizontal and vertical orientation on a simulated asset. With these baseline characteristics determined, we moved two of the four tags through a real world environment in three dimensions using an industrial robotic system to determine the effect of asset position in relation to the reader on tag readability. Combining the data collected over these two studies, we provide a rich analysis of the feasibility of asset tracking in a real world supply chain, where there would likely be multiple tag types. We offer fine grained analyses of the tag types and make recommendations for diverse supply chain asset tracking.


2021 ◽  
Vol 6 (55) ◽  
pp. eabc3164
Author(s):  
Liangjun Zhang ◽  
Jinxin Zhao ◽  
Pinxin Long ◽  
Liyang Wang ◽  
Lingfeng Qian ◽  
...  

Excavators are widely used for material handling applications in unstructured environments, including mining and construction. Operating excavators in a real-world environment can be challenging due to extreme conditions—such as rock sliding, ground collapse, or excessive dust—and can result in fatalities and injuries. Here, we present an autonomous excavator system (AES) for material loading tasks. Our system can handle different environments and uses an architecture that combines perception and planning. We fuse multimodal perception sensors, including LiDAR and cameras, along with advanced image enhancement, material and texture classification, and object detection algorithms. We also present hierarchical task and motion planning algorithms that combine learning-based techniques with optimization-based methods and are tightly integrated with the perception modules and the controller modules. We have evaluated AES performance on compact and standard excavators in many complex indoor and outdoor scenarios corresponding to material loading into dump trucks, waste material handling, rock capturing, pile removal, and trenching tasks. We demonstrate that our architecture improves the efficiency and autonomously handles different scenarios. AES has been deployed for real-world operations for long periods and can operate robustly in challenging scenarios. AES achieves 24 hours per intervention, i.e., the system can continuously operate for 24 hours without any human intervention. Moreover, the amount of material handled by AES per hour is closely equivalent to an experienced human operator.


2018 ◽  
Vol 8 (7) ◽  
pp. 1169 ◽  
Author(s):  
Ki-Baek Lee ◽  
Young-Joo Kim ◽  
Young-Dae Hong

This paper proposes a novel search method for a swarm of quadcopter drones. In the proposed method, inspired by the phenomena of swarms in nature, drones effectively look for the search target by investigating the evidence from the surroundings and communicating with each other. The position update mechanism is implemented using the particle swarm optimization algorithm as the swarm intelligence (a well-known swarm-based optimization algorithm), as well as a dynamic model for the drones to take the real-world environment into account. In addition, the mechanism is processed in real-time along with the movements of the drones. The effectiveness of the proposed method was verified through repeated test simulations, including a benchmark function optimization and air pollutant search problems. The results show that the proposed method is highly practical, accurate, and robust.


2019 ◽  
Vol 84 (5) ◽  
pp. 1051-1058
Author(s):  
Mayu Yunokawa ◽  
Shinsuke Sasada ◽  
Yae Takehara ◽  
Kenta Takahashi ◽  
Tatsunori Shimoi ◽  
...  

Author(s):  
Aatish Chandak ◽  
Arjun Aravind ◽  
Nithin Kamath

The methods for autonomous navigation of a robot in a real world environment is an area of interest for current researchers. Although there have been a variety of models developed, there are problems with regards to the integration of sensors for navigation in an outdoor environment like moving obstacles, sensor and component accuracy. This paper details an attempt to develop an autonomous robot prototype using only ultrasonic sensors for sensing the environment and GPS/ GSM and a digital compass for position and localization. An algorithm for the navigation based on reactive behaviour is presented. Once the robot has navigated to its final location based on remote access by the owner, it surveys the geographical region and uploads the real time images to the owner using an API that is developed for the Raspberry PI’s kernel.


Sign in / Sign up

Export Citation Format

Share Document