Microrna can completely rescue b lineage commitment arrest due to early B cell factor 1 deficiency—can micrornas control cell fate as an alternative to transcription factors?

2015 ◽  
Vol 43 (9) ◽  
pp. S74
Author(s):  
B. Chanda ◽  
Ai Kotani
2004 ◽  
Vol 199 (12) ◽  
pp. 1689-1700 ◽  
Author(s):  
Christopher S. Seet ◽  
Rachel L. Brumbaugh ◽  
Barbara L. Kee

The basic helix-loop-helix transcription factors encoded by the E2A gene function at the apex of a transcriptional hierarchy involving E2A, early B cell factor (EBF), and Pax5, which is essential for B lymphopoiesis. In committed B lineage progenitors, E2A proteins have also been shown to regulate many lineage-associated genes. Herein, we demonstrate that the block in B lymphopoiesis imposed by the absence of E2A can be overcome by expression of EBF, but not Pax5, indicating that EBF is the essential target of E2A required for development of B lineage progenitors. Our data demonstrate that EBF, in synergy with low levels of alternative E2A-related proteins (E proteins), is sufficient to promote expression of most B lineage genes. Remarkably, however, we find that E2A proteins are required for interleukin 7–dependent proliferation due, in part, to a role for E2A in optimal expression of N-myc. Therefore, high levels of E protein activity are essential for the activation of EBF and N-myc, whereas lower levels of E protein activity, in synergy with other B lineage transcription factors, are sufficient for expression of most B lineage genes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3562-3562
Author(s):  
Karel Fišer ◽  
Lucie Slámová ◽  
Alena Dobiášová ◽  
Júlia Starková ◽  
Eva Froňková ◽  
...  

Abstract We identified a subset of BCP-ALL with switch towards the monocytic lineage within the first month of treatment (swALL)[Slámová et al Leukemia 2014]. During the switch cells gradually lose CD19 and CD34 expression and acquire CD33 and CD14 positivity. We proved clonal relatedness of switched monocytic blasts with the diagnostic leukemic cells based on identical Ig-TCR rearrangements. SwALL cases are not associated with MLL or BCR/ABL1 aberrancies and lack any known genetic markers of lineage ambiguity (detected by FISH or MLPA). We analyzed transcriptomes of swALL samples at diagnosis (n=4) and at d8 (n=4) where the immunophenotypic switching was already apparent as well as control BCP-ALL (n=4). RNA was isolated form either FACS sorted cells or whole BM when blasts constituted >80% of cells. For RNA-Seq we used Illumina HiSeq 2000 paired-end or single end sequencing. Raw sequencing data were analyzed using adapted protocol from Anders at al [Anders et al Nature Protocols 2013] and custom scripts. For methylome analysis we used Enhanced Reduced Representation Bisulfite Sequencing (ERRBS)[Akalin et al PLoS Genetics 2012]. ERRBS quantitatively measures DNA methylation at ~3M CpGs genome-wide. Samples from swALL at diagnosis (n=7) and at d8 (n=4) and control BCP-ALL (n=4) were processed. Analysis was performed according to [Akalin et al Genome Biology 2012] and followed with custom analysis in R statistical language. Comparison (generalized exact binomial test) of transcriptomes of B-lineage blasts from diagnosis between swALLs and control BCP-ALLs revealed a number of differentially expressed genes. Among 300 most significantly differentially expressed were KLF4, CEBPD, CLEC12A and CLEC12B (upregulated in swALL) and ANXA5, VPREB1, CD9 and IGHG3 (downregulated in swALL). Hierarchical clustering separated not only swALL and control BCP-ALL, but also swALL cells before and during the monocytic switch. Changes in gene expression during lineage switch included downregulation of ITGA6, Id2, EBF1, CD19, CD34, FLT3, MYB, CD79a, BCR, PAX5, GATA3 and TCF3 genes and upregulation of S100A10, AIF1, CD14, CD33, LGALS1, RNF130 and MNDA. When comparing all three cell types (swALL B cell and monocytic blasts and control BCP-ALL blasts) we concentrated on 1) immunophenotype switch markers and 2) lineage related transcription factors (TF): 1) Both markers typical for B cell blasts (CD19, CD34) decreased during the switch. However while CD19 was expressed in swALL at diagnosis at same levels as in control BCP-ALL, CD34 was overexpressed in swALL compared to BCP-ALL at diagnosis. Both monocytic markers (CD33, CD14) increased their expression during the switch. CD14 showed no difference between swALL and control BCP-ALL at diagnosis. However CD33 was interestingly upregulated in swALL already at diagnosis and continued to rise during the switch. SwALL had therefore deregulated expression of lineage commitment markers already at diagnosis favoring stemness marker CD34 and myeloid marker CD33. 2) B lineage commitment related TFs (EBF1, TCF3, PAX5) were expressed in B lineage blasts in both swALL and control BCP-ALL. However they were all downregulated during the switch. On the other hand myeloid lineage related transcription factor CEBPA is overexpressed in diagnostic B lineage blasts in swALL compared to control BCP-ALL cases. Similarly CEBPD is overexpressed in swALL and its expression further rises during the switch. Other hematopoietic TFs upregulated in swALL cases include KLF4, NANOG and GATA3. To confirm some of the epigenetic markers of swALL cases (demethylation of CEBPA promoter) and to widen epigenetic screening we used ERRBS. While some of the upregulated genes had expectedly hypomethylated promoters in swALL (CEBPA, GATA3) other genes (TCF3, PAX5) had demethylated promoters in all cases. While the whole DNA methylation picture is still a challenge to draw both omics method could clearly separate swALL cases from control BCP-ALL using principal component analysis. In summary we show that immunophenotypic shift is associated with gene expression changes of surface markers, lineage specific transcription factors and other genes. Some of the genes have altered expression already at diagnosis. Expression of some key lineage genes is differentially regulated by DNA methylation. Supported by: GAUK 914613, GAČR P301/10/1877, UNCE 204012, IGA NT13462-4 Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 188 (4) ◽  
pp. 699-713 ◽  
Author(s):  
Barbara L. Kee ◽  
Cornelis Murre

The transcription factors encoded by the E2A and early B cell factor (EBF) genes are required for the proper development of B lymphocytes. However, the absence of B lineage cells in E2A- and EBF-deficient mice has made it difficult to determine the function or relationship between these proteins. We report the identification of a novel model system in which the role of E2A and EBF in the regulation of multiple B lineage traits can be studied. We found that the conversion of 70Z/3 pre-B lymphocytes to cells with a macrophage-like phenotype is associated with the loss of E2A and EBF. Moreover, we show that ectopic expression of the E2A protein E12 in this macrophage line results in the induction of many B lineage genes, including EBF, IL7Rα, λ5, and Rag-1, and the ability to induce κ light chain in response to mitogen. Activation of EBF may be one of the critical functions of E12 in regulating the B lineage phenotype since expression of EBF alone leads to the activation of a subset of E12-inducible traits. Our data demonstrate that, in the context of this macrophage line, E12 induces expression of EBF and together these transcription factors coordinately regulate numerous B lineage–associated genes.


2008 ◽  
Vol 20 (4) ◽  
pp. 221-227 ◽  
Author(s):  
Kara Lukin ◽  
Scott Fields ◽  
Jacqueline Hartley ◽  
James Hagman

2021 ◽  
pp. ASN.2020081177
Author(s):  
Jingping Yang ◽  
Difei Zhang ◽  
Masaru Motojima ◽  
Tsutomu Kume ◽  
Qing Hou ◽  
...  

BackgroundTranscriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood.MethodsThe distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance.ResultsSuperenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish.ConclusionsFOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs’ regulatory roles in glomeruli transcription programs.


2020 ◽  
Vol 39 (3) ◽  
pp. 681-709 ◽  
Author(s):  
Yannasittha Jiramongkol ◽  
Eric W.-F. Lam

Abstract Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4341-4341
Author(s):  
Nikki R. Kong ◽  
Li Chai ◽  
Astar Winoto ◽  
Robert Tjian

Abstract Hematopoiesis is a multi-step developmental process that requires an intricate coordination of signal relays and transcriptional regulation to give rise to all blood lineages in the organism. Hematopoietic stem/progenitor cells (HSPCs) can be driven to differentiate along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for HSPCs is whether to adopt the lymphoid or myeloid fate. Despite the discovery of several transcription factors required for different lineages of hematopoietic differentiation, the understanding of how gene expression allows HSPCs to adopt the lymphoid fate still remains incomplete. A study using an inducible hematopoietic-specific (Mx1-Cre) KO mouse line found that Myocyte Enhancer Factor 2C (MEF2C) is required for multi-potent HSPCs to differentiate into the lymphoid lineage (Stehling-Sun et al, 2009). However, the mechanisms of how MEF2C is activated and in turn, drives lymphoid fate specification are not known. Through a candidates approach with co-expression and co-immunoprecipitation, we have identified Early B Cell Factor 1 (EBF1) to be a specific interacting partner of MEF2C, and not other B cell specific transcription factors such as E12, E47, or PAX5. Genome-wide survey of MEF2C and EBF1 binding sites via chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in a proB cell line revealed that these two sequence-specific transcription factors co-occupy the promoters and intragenic regions of many B cell specific genes such as Il7ra, Myb, Foxo1, Ets1, Ebf1 itself, and Pou2af1. Regulatory regions of Il7ra and Foxo1 derived from the ChIP-seq data, as well as an artificial enhancer containing trimerized MEF2C and EBF1 binding sites, were examined in luciferase reporter assays and found to be sufficient to drive transcription from a minimal reporter in 293T cells. Further, this activation was co-dependent on MEF2C and EBF1 expression. The functional relevance of MEF2C binding was further supported by gene expression analyses of MEF2C-regulated B lineage genes in Mx1-Cre Mef2c KO mice compared to WT mice. Consistent with ChIP-seq and luciferase reporter assays, Myb, Ebf1, Il7ra, and Foxo1 all had significantly decreased expression levels in MEF2C-null HSPCs as well as B lineage progenitor cells, compared to sex-matched littermate control mice. Interestingly, myeloid gene expression in Mef2c-KO mice was increased compared to WT control. MEF2C ChIP-seq in a murine HSPC line revealed that it binds myeloid lineage gene targets that are not regulated by MEF2C in proB cells. These results suggest that MEF2C can repress myeloid gene expression in HSPCs. To elucidate the mechanism of this functional switch, we tested the requirement for MAPK pathways to phosphorylate and activate MEF2C at three previously identified residues in order to drive B cell differentiation. Inhibition of p38 MAPK (p38i), but not ERK1/2/5, decreased the potential of HSPCs to differentiate into B220+CD19+ B cells cultured with cytokines that drive this particular lineage fate. Instead, p38i-treated progenitor cells gave rise to more myeloid cells. 65% of this phenotype was rescued by over-expressing a phosphomimetic mutant of MEF2C that can bypass p38 inhibition. Furthermore, MEF2C is known to bind class II HDAC proteins to repress gene expression, providing a possible mechanism for its repression of myeloid transcription program. Supporting this mechanism, phosphomimetic and HDAC-binding double mutant of MEF2C can rescue p38 inhibition phenotype almost 100%. Taken together, this study elucidated the molecular mechanisms of a key lymphoid-specific lineage fate determinant, MEF2C. We discovered that p38 MAPK converts MEF2C from a transcriptional repressor to an activator by phosphorylation in B cell specification, which can be applied to understanding other cell differentiation processes regulated by this important stress-induced signaling pathway. Furthermore, we identified MEF2C’s binding and co-activating partner EBF1, several novel B cell specific targets that it activates in proB cells, and a novel myeloid transcription program that it represses in hematopoietic progenitors. Therefore, these results expanded our understanding of the intricate transcription network that regulates B cell differentiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1016-1026 ◽  
Author(s):  
Shawn W. Cochrane ◽  
Ying Zhao ◽  
Robert S. Welner ◽  
Xiao-Hong Sun

Abstract Hematopoiesis consists of a series of lineage decisions controlled by specific gene expression that is regulated by transcription factors and intracellular signaling events in response to environmental cues. Here, we demonstrate that the balance between E-protein transcription factors and their inhibitors, Id proteins, is important for the myeloid-versus-lymphoid fate choice. Using Id1-GFP knockin mice, we show that transcription of the Id1 gene begins to be up-regulated at the granulocyte-macrophage progenitor stage and continues throughout myelopoiesis. Id1 expression is also stimulated by cytokines favoring myeloid differentiation. Forced expression of Id1 in multipotent progenitors promotes myeloid development and suppresses B-cell formation. Conversely, enhancing E-protein activity by expressing a variant of E47 resistant to Id-mediated inhibition prevents the myeloid cell fate while driving B-cell differentiation from lymphoid-primed multipotent progenitors. Together, these results suggest a crucial function for E proteins in the myeloid-versus-lymphoid lineage decision.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3131-3148 ◽  
Author(s):  
M.K. Anderson ◽  
G. Hernandez-Hoyos ◽  
R.A. Diamond ◽  
E.V. Rothenberg

Ets family transcription factors control the expression of a large number of genes in hematopoietic cells. Here we show strikingly precise differential expression of a subset of these genes marking critical, early stages of mouse lymphocyte cell-type specification. Initially, the Ets family member factor Erg was identified during an arrayed cDNA library screen for genes encoding transcription factors expressed specifically during T cell lineage commitment. Multiparameter fluorescence-activated cell sorting for over a dozen cell surface markers was used to isolate 18 distinct primary-cell populations representing discrete T cell and B cell developmental stages, pluripotent lymphoid precursors, immature NK-like cells and myeloid hematopoietic cells. These populations were monitored for mRNA expression of the Erg, Ets-1, Ets-2, Fli-1, Tel, Elf-1, GABPalpha, PU.1 and Spi-B genes. The earliest stages in T cell differentiation show particularly dynamic Ets family gene regulation, with sharp transitions in expression correlating with specification and commitment events. Ets, Spi-B and PU.1 are expressed in these stages but not by later T-lineage cells. Erg is induced during T-lineage specification and then silenced permanently, after commitment, at the beta-selection checkpoint. Spi-B is transiently upregulated during commitment and then silenced at the same stage as Erg. T-lineage commitment itself is marked by repression of PU.1, a factor that regulates B-cell and myeloid genes. These results show that the set of Ets factors mobilized during T-lineage specification and commitment is different from the set that maintains T cell gene expression during thymocyte repertoire selection and in all classes of mature T cells.


Sign in / Sign up

Export Citation Format

Share Document