Animal model of repeated low-level blast traumatic brain injury displays acute and chronic neurobehavioral and neuropathological changes

2021 ◽  
pp. 113938
Author(s):  
Arun Reddy Ravula ◽  
Jose Rodriguez ◽  
Daniel Younger ◽  
Venkatesan Perumal ◽  
Ningning Shao ◽  
...  
2020 ◽  
pp. bmjmilitary-2020-001655
Author(s):  
J W Denny ◽  
R J Brown ◽  
M G Head ◽  
J Batchelor ◽  
A S Dickinson

IntroductionThere is little systematic tracking or detailed analysis of investments in research and development for blast injury to support decision-making around research future funding.MethodsThis study examined global investments into blast injury-related research from public and philanthropic funders across 2000–2019. Research databases were searched using keywords, and open data were extracted from funder websites. Data collected included study title, abstract, award amount, funder and year. Individual awards were categorised to compare amounts invested into different blast injuries, the scientific approaches taken and analysis of research investment into blast traumatic brain injury (TBI).ResultsA total of 806 awards were identified into blast injury-related research globally, equating to US$902.1 million (m, £565.9m GBP). There was a general increase in year-on-year investment between 2003 and 2009 followed by a consistent decline in annual funding since 2010. Pre-clinical research received $671.3 m (74.4%) of investment. Brain-related injury research received $427.7 m (47.4%), orthopaedic injury $138.6 m (15.4%), eye injury $63.7 m (7.0%) and ear injury $60.5m (6.7%). Blast TBI research received a total investment of $384.3 m, representing 42.6% of all blast injury-related research. The U.S. Department of Defense funded $719.3 m (80%).ConclusionsInvestment data suggest that blast TBI research has received greater funding than other blast injury health areas. The funding pattern observed can be seen as reactive, driven by the response to the War on Terror, the rising profile of blast TBI and congressionally mandated research.


2006 ◽  
Vol 39 (6) ◽  
pp. 1086-1095 ◽  
Author(s):  
Philip V. Bayly ◽  
Erin E. Black ◽  
Rachel C. Pedersen ◽  
Elizabeth P. Leister ◽  
Guy M. Genin

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Kee D. Kim ◽  
Marike Zwienenberg ◽  
Kiarash Shahlaie

Traumatic brain injury remains a leading cause of death and disability worldwide. Patients with severe traumatic brain injury are best treated with a multidisciplinary, evidence-based, protocol-directed approach, which has been shown to decrease mortality and improve functional outcomes. Therapy is directed at the prevention of secondary brain injury through optimizing cerebral blood flow and the delivery of metabolic fuel (ie, oxygen and glucose). This is accomplished through the measurement and treatment of elevated intracranial pressure (ICP), the strict avoidance of hypotension and hypoxemia, and in some instances, surgical management. The treatment of elevated ICP is approached in a protocolized, tiered manner, with escalation of care occurring in the setting of refractory intracranial hypertension, culminating in either decompressive surgery or barbiturate coma. With such an approach, the rates of mortality secondary to traumatic brain injury are declining despite an increasing incidence of traumatic brain injury. This review contains 3 figures, 5 tables and 69 reference Key Words: blast traumatic brain injury, brain oxygenation, cerebral perfusion pressure, decompressive craniectomy, hyperosmolar therapy, intracranial pressure, neurocritical care, penetrating traumatic brain injury, severe traumatic brain injury


Brain Injury ◽  
2012 ◽  
Vol 26 (7-8) ◽  
pp. 984-995 ◽  
Author(s):  
Kathryn C. Russell ◽  
Patricia M. Arenth ◽  
Joelle M. Scanlon ◽  
Lauren Kessler ◽  
Joseph H. Ricker

2013 ◽  
Vol 71 (10) ◽  
pp. 802-806 ◽  
Author(s):  
Almir Ferreira de Andrade ◽  
Matheus Schmidt Soares ◽  
Gustavo Cartaxo Patriota ◽  
Alessandro Rodrigo Belon ◽  
Wellingson Silva Paiva ◽  
...  

Objective Intracranial hypertension (IH) develops in approximately 50% of all patients with severe traumatic brain injury (TBI). Therefore, it is very important to identify a suitable animal model to study and understand the pathophysiology of refractory IH to develop effective treatments. Methods We describe a new experimental porcine model designed to simulate expansive brain hematoma causing IH. Under anesthesia, IH was simulated with a balloon insufflation. The IH variables were measured with intracranial pressure (ICP) parenchymal monitoring, epidural, cerebral oximetry, and transcranial Doppler (TCD). Results None of the animals died during the experiment. The ICP epidural showed a slower rise compared with parenchymal ICP. We found a correlation between ICP and cerebral oximetry. Conclusion The model described here seems useful to understand some of the pathophysiological characteristics of acute IH.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mario Oyola ◽  
Ashley Russell ◽  
Lauren Miller ◽  
Robert Handa ◽  
Tao-Yiao Wu

Sign in / Sign up

Export Citation Format

Share Document