Effects of IFN-γ, TNF-α, IL-10 and TGF-β on Neospora caninum infection in rat glial cells

2013 ◽  
Vol 133 (3) ◽  
pp. 269-274 ◽  
Author(s):  
E.E.V. Jesus ◽  
A.M. Pinheiro ◽  
A.B. Santos ◽  
S.M. Freire ◽  
M.B. Tardy ◽  
...  
2011 ◽  
Vol 56 (3) ◽  
Author(s):  
Inmaculada López-Pérez ◽  
Esther Collantes-Fernández ◽  
Silvia Rojo-Montejo ◽  
Vanesa Navarro-Lozano ◽  
Verónica Risco-Castillo ◽  
...  

AbstractNeospora caninum is transmitted from a cow to its foetus by vertical transmission and the timing of infection in gestation is an important factor in determining the disease outcome. Few studies have explored the role of the placenta in the outcome of N. caninum infection during pregnancy. Here, we described the N. caninum presence, parasite load, local immune response, and histopathological lesions at the materno-foetal interface after infection of BALB/c mice at early and late stages of gestation. In mice infected at early gestation, N. caninum DNA was detected in foetoplacentary units 7 days post-infection (PI) and in the placenta, but not in viable foetuses on day 14 PI, indicating that the parasite was multiplying primarily in the placental tissues without reaching the foetus. Moreover, parasite DNA was detected in resorptions, suggesting that foetal death could be a consequence of infection. An increase in IFN-γ, TNF-α and IL-10 expression was observed in N. caninum PCR-positive placentas, which could favour N. caninum foetal transmission and be harmful to both the placenta and the foetus. Histopathological analysis revealed necrosis affecting both the maternal and foetal sides of the placenta. At late gestation, transmission occurred rapidly following infection (day 3 PI), but parasite were rarely found. In addition, an increase in cytokine expression was observed in spleen and placental tissues from infected animals, while a downregulation in IL-4 expression was only observed in the spleen. Finally, necrosis in the placenta was limited to the maternal side, suggesting that the parasite is mainly multiplying in the placental tissue at this stage. Thus, the results of the present study indicate that the placenta may be actively involved in N. caninum pathogenesis.


2008 ◽  
Vol 76 (6) ◽  
pp. 2352-2361 ◽  
Author(s):  
Anne Rosbottom ◽  
E. Helen Gibney ◽  
Catherine S. Guy ◽  
Anja Kipar ◽  
Robert F. Smith ◽  
...  

ABSTRACT The protozoan parasite Neospora caninum causes fetal death after experimental infection of pregnant cattle in early gestation, but the fetus survives a similar infection in late gestation. An increase in Th1-type cytokines in the placenta in response to the presence of the parasite has been implicated as a contributory factor to fetal death due to immune-mediated pathological alterations. We measured, using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, the levels of cytokines in the placentas of cattle experimentally infected with N. caninum in early and late gestation. After infection in early gestation, fetal death occurred, and the levels of mRNA of both Th1 and Th2 cytokines, including interleukin-2 (IL-2), gamma interferon (IFN-γ), IL-12p40, tumor necrosis factor alpha (TNF-α), IL-18, IL-10, and IL-4, were significantly (P < 0.01) increased by up to 1,000-fold. There was extensive placental necrosis and a corresponding infiltration of CD4+ T cells and macrophages. IFN-γ protein expression was also highly increased, and a modest increase in transforming growth factor β was detected. A much smaller increase in the same cytokines and IFN-γ protein expression, with minimal placental necrosis and inflammatory infiltration, occurred after N. caninum infection in late gestation when the fetuses survived. Comparison of cytokine mRNA levels in separated maternal and fetal placental tissue that showed maternal tissue was the major source of all cytokine mRNA except for IL-10 and TNF-α, which were similar in both maternal and fetal tissues. These results suggest that the magnitude of the cytokine response correlates with but is not necessarily the cause of fetal death and demonstrate that a polarized Th1 response was not evident in the placentas of N. caninum-infected cattle.


2020 ◽  
Author(s):  
Shan Li ◽  
Nan Zhang ◽  
Shaoxiong Liu ◽  
Jianhua Li ◽  
Li Liu ◽  
...  

Abstract BackgroundNeospora caninum causes infections in a wide range of intermediate hosts and remains a threatening disease worldwide because of the lack of effective drugs and vaccines. Our previous studies demonstrated that N. caninum 14-3-3 protein (Nc14-3-3), which is included in N. caninum extracellular vesicles (NEVs), can induce effective immune responses and stimulate cytokine expression in mouse peritoneal macrophages. However, whether Nc14-3-3 has a protective effect and its mechanisms are poorly understood.MethodsHere, we evaluated immune responses and protective effects of Nc14-3-3 against 2×107 Nc-1 tachyzoites. Antibody (IgG, IgGl and IgG2a) levels and Th1-type (IFN-γ and IL-12) and Th2-type (IL-4 and IL-10) cytokines in mouse serum; survival rates; survival time; and parasite burdens were detected.ResultsIn the present study, the immunostimulatory effect of Nc14-3-3 was confirmed, as it triggered Th1-type cytokine (IFN-γ and IL-12) production in mouse serum two weeks after the final immunization. Moreover, the immunization of C57BL/6 mice with Nc14-3-3 induced high IgG antibody levels and significant increases in CD8+ T lymphocytes in the spleens of mice, indicating that a significant cellular immune response was induced. Mouse survival rates and survival times were significantly prolonged after immunization survival rates were 40% for Nc14-3-3 immunization and 60% for NEV immunization, while mice that received GST, PBS, or blank control all died at 13, 9, and 8 days after intraperitoneal N. caninum challenge. In addition, qPCR analysis indicated that there was a lower parasite burden and milder pathological changes in the mice immunized with Nc14-3-3.ConclusionsOur data demonstrate the vaccination of mice with Nc14-3-3 elicits both cellular and humoural immune responses and provides partial protection against acute neosporosis. Thus, Nc14-3-3 could be an effective antigen candidate for vaccine development for neosporosis.


2014 ◽  
Vol 21 (8) ◽  
pp. 1185-1188 ◽  
Author(s):  
Chisa Abe ◽  
Sachi Tanaka ◽  
Fumiaki Ihara ◽  
Yoshifumi Nishikawa

ABSTRACTWe observed that murine macrophages showed greater activation and increased interleukin 6 (IL-6), IL-12p40, and interferon gamma (IFN-γ) production duringNeospora caninuminfection. Many macrophages migrated to the site of infection. Furthermore, macrophage-depleted mice exhibited increased sensitivity toN. caninuminfection. This study indicates that macrophages are required for achieving protective immunity againstN. caninum.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shan Li ◽  
Nan Zhang ◽  
Shaoxiong Liu ◽  
Jianhua Li ◽  
Li Liu ◽  
...  

Neospora caninum is an apicomplexan parasite that infects many mammals and remains a threatening disease worldwide because of the lack of effective drugs and vaccines. Our previous studies demonstrated that N. caninum 14-3-3 protein (Nc14-3-3), which is included in N. caninum extracellular vesicles (NEVs), can induce effective immune responses and stimulate cytokine expression in mouse peritoneal macrophages. However, whether Nc14-3-3 has a protective effect and its mechanisms are poorly understood. Here, we evaluated the immune responses and protective effects of Nc14-3-3 against exposure to 2 × 107 Nc-1 tachyzoites. Antibody (IgG, IgGl, and IgG2a) levels and Th1-type (IFN-γ and IL-12) and Th2-type (IL-4 and IL-10) cytokines in mouse serum, survival rates, survival times, and parasite burdens were detected. In the present study, the immunostimulatory effect of Nc14-3-3 was confirmed, as it triggered Th1-type cytokine (IFN-γ and IL-12) production in mouse serum 2 weeks after the final immunization. Moreover, the immunization of C57BL/6 mice with Nc14-3-3 induced high IgG antibody levels and significant increases in CD8+ T lymphocytes in the spleens of mice, indicating that the cellular immune response was significantly stimulated. Mouse survival rates and times were significantly prolonged after immunization; the survival rates were 40% for Nc14-3-3 immunization and 60% for NEV immunization, while mice that received GST, PBS, or blank control all died at 13, 9, or 8 days, respectively, after intraperitoneal N. caninum challenge. In addition, qPCR analysis indicated that there was a reduced parasite burden and diminished pathological changes in the mice immunized with Nc14-3-3. Our data demonstrate that vaccination of mice with Nc14-3-3 elicits both cellular and humoral immune responses and provides partial protection against acute neosporosis. Thus, Nc14-3-3 could be an effective antigen candidate for vaccine development for neosporosis.


Sign in / Sign up

Export Citation Format

Share Document