The influence of ventilated cavitation on vortex shedding behind a bluff body

2018 ◽  
Vol 98 ◽  
pp. 181-194 ◽  
Author(s):  
Zhiying Wang ◽  
Mindi Zhang ◽  
Decai Kong ◽  
Biao Huang ◽  
Guoyu Wang ◽  
...  
2020 ◽  
Vol 23 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Hanfeng Wang ◽  
Si Peng ◽  
Shuwei Zhou ◽  
...  

Experiments on the aerodynamics of a two-dimensional bluff body simplified from a China high-speed train in crosswinds were carried out in a wind tunnel. Effects of wind angle of attack α varying in [−20°, 20°] were investigated at a moderate Reynolds number Re = 9.35 × 104 (based on the height of the model). Four typical behaviors of aerodynamics were identified. These behaviors are attributed to the flow structure around the upper and lower halves of the model changing from full to intermittent reattachment, and to full separation with a variation in α. An alternate transition phenomenon, characterized by an alteration between large- and small-amplitude aerodynamic fluctuations, was detected. The frequency of this alteration is about 1/10 of the predominant vortex shedding. In the intervals of the large-amplitude behavior, aerodynamic forces fluctuate periodically with a strong span-wise coherence, which are caused by the anti-symmetric vortex shedding along the stream-wise direction. On the contrary, the aerodynamic forces fluctuating at small amplitudes correspond to a weak span-wise coherence, which are ascribed to the symmetric vortex shedding from the upper and lower halves of the model. Generally, the mean amplitude of the large-amplitude mode is 3 times larger than that of the small one. Finally, the effects of Reynolds number were examined within Re = [9.35 × 104, 2.49 × 105]. Strong Reynolds number dependence was observed on the model with two rounded upper corners.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


1973 ◽  
Vol 60 (2) ◽  
pp. 401-409 ◽  
Author(s):  
D. J. Maull ◽  
R. A. Young

Experiments are described in which the vortex shedding from a bluff body and the base pressure coefficient have been measured in a shear flow. It is shown that the shedding breaks down into a number of spanwise cells in each of which the frequency is constant. The division between the cells is thought to be marked by a longitudinal vortex in the stream direction and this is supported by evidence from experiments where a longitudinal vortex was generated in an otherwise uniform flow.


1999 ◽  
Vol 401 ◽  
pp. 123-156 ◽  
Author(s):  
CHULHONG MIN ◽  
HAECHEON CHOI

The objective of this study is to develop a method of controlling vortex shedding behind a bluff body using control theory. A suboptimal feedback control procedure for local sensing and local actuation is developed and applied to the flow behind a circular cylinder. The location of sensors for feedback is limited to the cylinder surface and the control input from actuators is the blowing and suction on the cylinder surface. Three different cost functionals to be minimized (J1 and J2) or maximized (J3) are investigated: J1 is proportional to the pressure drag of the cylinder, J2 is the square of the difference between the target pressure (inviscid flow pressure) and real flow pressure on the cylinder surface, and J3 is the square of the pressure gradient on the cylinder surface, respectively. Given the cost functionals, the flow variable to be measured by the sensors and the control input from the actuators are determined from the suboptimal feedback control procedure. Several cases for each cost functional have been numerically simulated at Re = 100 and 160 to investigate the performance of the control algorithm. For all actuations, vortex shedding becomes weak or disappears, and the mean drag and drag/lift fluctuations significantly decrease. For a given magnitude of the blowing/suction, reducing J2 provides the largest drag reduction among the three cost functionals.


2015 ◽  
Vol 144 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Junshi Ito ◽  
Hiroshi Niino

Abstract A mesoscale atmospheric numerical model is used to simulate two cases of Kármán vortex shedding in the lee of Jeju Island, South Korea, in the winter of 2013. Observed cloud patterns associated with the Kármán vortex shedding are successfully reproduced. When the winter monsoon flows out from the Eurasian continent, a convective mixed layer develops through the supply of heat and moisture from the relatively warm Yellow Sea and encounters Jeju Island and dynamical conditions favorable for the formation of lee vortices are realized. Vortices that form behind the island induce updrafts to trigger cloud formation at the top of the convective boundary layer. A sensitivity experiment in which surface drag on the island is eliminated demonstrates that the formation mechanism of the atmospheric Kármán vortex shedding is different from that behind a bluff body in classical fluid mechanics.


2000 ◽  
Vol 19 (5) ◽  
pp. 789-812 ◽  
Author(s):  
Ansgar Weickgenannt ◽  
Peter A. Monkewitz

Sign in / Sign up

Export Citation Format

Share Document