Effect of Porous Blocks on Flow Development through a Serpentine Cooling Passage under Stationary and Rotating Conditions

Author(s):  
Firas Abdulsattar ◽  
Shanying Zhang ◽  
Hector Iacovides ◽  
Dennis Cooper
Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


Author(s):  
Mohammed Faheem ◽  
Rayid Muneer ◽  
Mohammed Avvad ◽  
Mohammed Aneeque ◽  
Sher Afghan Khan

Author(s):  
Lei-Yong Jiang ◽  
Yinghua Han ◽  
Prakash Patnaik

To understand the physics of volcanic ash impact on gas turbine hot-components and develop much-needed tools for engine design and fleet management, the behaviors of volcanic ash in a gas turbine combustor and nozzle guide vanes (NGV) have been numerically investigated. High-fidelity numerical models are generated, and volcanic ash sample, physical, and thermal properties are identified. A simple critical particle viscosity—critical wall temperature model is proposed and implemented in all simulations to account for ash particles bouncing off or sticking on metal walls. The results indicate that due to the particle inertia and combustor geometry, the volcanic ash concentration in the NGV cooling passage generally increases with ash size and density, and is less sensitive to inlet velocity. It can reach three times as high as that at the air inlet for the engine conditions and ash properties investigated. More importantly, a large number of the ash particles entering the NGV cooling chamber are trapped in the cooling flow passage for all four turbine inlet temperature conditions. This may reveal another volcanic ash damage mechanism originated from engine cooling flow passage. Finally, some suggestions are recommended for further research and development in this challenging field. To the best of our knowledge, it is the first study on detailed ash behaviors inside practical gas turbine hot-components in the open literature.


Sign in / Sign up

Export Citation Format

Share Document