Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species

Author(s):  
Łukasz Stępień ◽  
Justyna Lalak-Kańczugowska
2016 ◽  
Vol 5 ◽  
pp. STI.S39844 ◽  
Author(s):  
Mohammad Ishaq ◽  
Ven Natarajan

Supraphysiological concentrations (SPCs) of triiodo-L-thyronine (T3) have been used in the treatment of a number of nonviral diseases. However, the signaling mechanisms that regulate the function of T3 at these concentrations and their role in modulating cellular stress pathways and antiviral responses are unknown. Here, we have investigated the effects of SPCs of T3 on integrated stress response (ISR) signaling pathways and the replication of vesicular stomatitis virus (VSV). T3 amplified Poly IC-induced activation of RNA-dependent protein kinase, induced phosphorylation of eIF2α, stress granule (SG) formation, IRE1α phosphorylation, XBP1 splicing, and the expression of stress markers. T3 inhibited VSV replication by modulating SG formation and the expression of stress response markers. ISR activator guanabenz also inhibited VSV replication and amplified T3-induced anti-VSV response. To summarize, we have uncovered novel functions of T3 at SPCs as an activator of ISR signaling pathways and an inhibitor of VSV replication. This study offers a proof of principle of the concept that ISR activating agents like SPC of T3 and guanabenz can be potential antiviral agents.


2015 ◽  
Vol 209 (6) ◽  
pp. 781-787 ◽  
Author(s):  
Lilian T. Lamech ◽  
Cole M. Haynes

In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2207-2207
Author(s):  
Gina Doody ◽  
Sophie Stephenson ◽  
Reuben Tooze

Abstract Human B lymphocyte-induced maturation protein-1 (BLIMP-1) was originally described as a repressor of the interferon-beta response to viral infection. Subsequently, the murine orthologue was identified as a regulator of plasma cell differentiation. The involvement of BLIMP-1 in hemopoietic differentiation is not restricted to the B-cell lineage as BLIMP-1 is induced during differentiation of myeloid progenitors. During in vitro macrophage and plasma cell differentiation the expression of BLIMP-1 is cytokine driven. However, the BLIMP-1 response to virus infection can be reproduced by transfection with double-stranded RNA (dsRNA), indicating that BLIMP-1 is a target of dsRNA responsive signaling pathways. A central regulator of the intracellular response to viral infection is the interferon-inducible double-stranded RNA activated kinase, PKR. PKR belongs to a family of kinases that phosphorylate the eukaryotic translation initiation factor 2-alpha (eIF2α) and activate common downstream signaling pathways. PERK, the endoplasmic reticulum (ER) PKR-homologue is activated during the unfolded protein response (UPR), a stress response involved in both macrophage activation and terminal B-cell differentiation. This suggested the hypothesis that BLIMP-1 may represent a shared target of signaling pathways in the response to cellular stresses such as virus infection and the UPR. In this study we demonstrate that BLIMP-1 is rapidly upregulated during the UPR in human myeloid and B-cell lines. This response is conserved in primary murine macrophages, in which mimics of physiological stress and classical activation stimuli also induce Blimp-1. During the UPR, BLIMP-1 mRNA is induced at the level of transcription, with enhanced recruitment of RNA polymerase II to the BLIMP-1 promoter. Furthermore the stress response is limited to induction of BLIMP-1α mRNA and does not affect levels of an alternate transcript encoding a truncated protein, BLIMP-1β. The common induction of BLIMP-1 mRNA by stimuli which trigger the UPR supports the hypothesis that BLIMP-1 is a target of the eIF2α kinase family. To test this hypothesis directly, we employed a dominant negative mutant PERK. Our data demonstrate that the BLIMP-1 response to UPR stress is dependent on an intact PERK signaling pathway. Collectively our results provide evidence for a novel link between cellular stress, the eIF2α kinase family and a regulator of differentiation in macrophages and B-cells.


2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 349-350
Author(s):  
B Littlejohn ◽  
D Price ◽  
D Neuendorff ◽  
J Carroll ◽  
R Vann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document