scholarly journals Identification of diverse germplasm lines for agronomic traits in a chickpea (Cicer arietinum L.) core collection for use in crop improvement

2007 ◽  
Vol 100 (2-3) ◽  
pp. 320-326 ◽  
Author(s):  
H.D. Upadhyaya ◽  
S.L. Dwivedi ◽  
C.L.L. Gowda ◽  
S. Singh
2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Sintayehu ADMAS ◽  
Teklehaimanot HAILESELASSIE ◽  
Kassahun TESFAYE ◽  
Eleni SHIFERAW ◽  
K. Colton FLYNN

<p>Frost stress is one of the most significant abiotic factors affecting chickpea (Cicer arietinum L.) production in the Ethiopian highlands. To investigate the frost tolerance of chickpea, 673 genotypes were characterized using an augmented design at Bakelo, Debre Berhan, Ethiopia for two years. A significant (p &lt; 0.01) variability amongst genotypes was recorded for all agronomic traits considered. A considerable number of accessions better performing over the frost susceptible genotypes were identified for agronomic traits. Stem/leaf pigmented genotypes showed a better reaction for frost stress than non-pigmented genotypes. The majority of black seeded chickpea adapted well under frost stress when compared to with brown and white seeded genotypes. According to the freezing tolerance rate (FTR) and plant survival rate (SR), 83 (12.3 %) and 85 (12.6 %) genotypes were identified as frost tolerant. There was a strong correlation (p &lt; 0.01) in grain yield with FTR, SR, seed shriveling score, stem/leaf pigmentation and seed color. Based on our findings, Ethiopian chickpea landraces has a good genetic potential for frost resistance traits for use in breeding programs. </p>


2016 ◽  
Vol 8 (2) ◽  
pp. 1068-1074
Author(s):  
Achala Bakshi ◽  
Vinay Kumar ◽  
Sushma Sagar ◽  
Sorabh Chaudhary ◽  
Rajendra Kumar ◽  
...  

Chickpea (Cicer arietinum L.) commonly also known as gram, Chana, Bengal gram and Garbanzo beans is the second most important pulse crop of the world mainly grown in arid and semi-arid regions. Assessment of genetic variability in the base population is the first step in any breeding programme for selection of genetically divergent parents and their use in the crop improvement programme. In the present investigation 20 genotypes of chickpea were characterized using a specific set of 15 numbers of Sequence tagged microsatellite site (STMS) markers. The number of alleles, allelic distribution and their frequency was estimated and found that the 36 alleles amplified with 15 STMS loci having an average of 2.4 alleles per locus. The number of alleles amplified varied from 1 to 4. The Polymorphic information content value ranged from 0 to 0.965 with an average of 0.373 indicated the considerable efficiency of markers for studying the polymorphism level. All primer showed higher polymorphism among the genotypes except two primers namely, TAA59 and GA105 which were monomorphic in nature. Genetic similarity based on UPGMA clustering the dendrogram grouped the 20 genotypes in three clusters, cluster I, II, III comprised of 2, 4, 14 genotypes, respectively. The maximum similarity was found between genotypes ICRISAT-4183 and ICRISAT- 7722 (0.972). The present study provided an insight of the inter-relationship among the genotypes and highlights the genetic distance by STMS markers. The genetic diversity revealed in this study could be exploited for selective breeding programme of chickpea improvement.


2011 ◽  
Vol 62 (5) ◽  
pp. 383 ◽  
Author(s):  
H. D. Upadhyaya ◽  
Shivali Sharma ◽  
C. L. L. Gowda ◽  
V. Gopal Reddy ◽  
Sube Singh

Proso millet (Panicum miliaceum L.) is a rich source of protein, minerals, and vitamins, and is an important cereal crop of Asia and Africa. Due to its lowest water and nutrient requirement, it has the potential for agriculture diversification. The development of a core collection would assist in efficient management and enhanced utilisation of proso millet genetic resources. The present investigation was conducted to develop a core collection of proso millet based on geographic information and 20 qualitative and quantitative traits recorded on 833 accessions conserved in the International Crops Research Institute for the Semi-Arid Tropics genebank. The entire germplasm collection was stratified into five groups based on races and data on 20 morpho-agronomic traits were used for clustering following Ward’s method. About 10% (or at least one accession) was randomly selected from each of 101 clusters to constitute a core collection of 106 accessions. Comparisons of means, variances, frequency distribution, diversity indices, and correlation studies indicated that the variation in the entire collection has been preserved in the core collection. This core collection provides a gateway to identify diverse trait-specific germplasm accessions for important agronomic traits and for abiotic and biotic stresses for use in crop improvement research and in crop diversification programs.


2018 ◽  
Vol 41 (4) ◽  
pp. 469-476
Author(s):  
Ernestina Valadez-Moctezuma ◽  
Anselmo de J. Cabrera-Hidalgo

El garbanzo (Cicer arietinum L.) es una de las principales leguminosas de grano cultivadas en el mundo. México es de los diez principales productores a nivel mundial con una producción total de 171 mil toneladas de grano. Este cultivo presenta alto nivel de autogamia y de monotonía genética, lo que dificulta la diferenciación de genotipos élite. En este estudio preliminar se evaluó la variabilidad de 57 genotipos de diferentes áreas geográficas mediante caracteres morfológicos y marcadores moleculares tipo RAPD e ISSR. El análisis de correspondencia múltiple mostró que los mayores valores discriminantes fueron el color de la flor azul y semillas grandes y de forma redondeada, pero el agrupamiento respectivo no diferenció a las accesiones, incluyendo las especies silvestres; sin embargo, el análisis UPGMA logró una mejor separación. Los marcadores RAPD aun cuando generaron perfiles de ADN, no fueron informativos, mientras que los ISSR diferenciaron a las 57 accesiones de C. arietinum utilizadas y a la especie silvestre C. reticulatum, lo que los hace buenos candidatos para caracterizar este cultivo. Este estudio sirvió como base para desarrollar otro sistema de marcadores moleculares más eficiente en esta especie.


Author(s):  
Rajanikanth Govindarajulu ◽  
Ashley N Hostetler ◽  
Yuguo Xiao ◽  
Srinivasa R Chaluvadi ◽  
Margarita Mauro-Herrera ◽  
...  

Abstract Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Sign in / Sign up

Export Citation Format

Share Document