scholarly journals Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum

Author(s):  
Rajanikanth Govindarajulu ◽  
Ashley N Hostetler ◽  
Yuguo Xiao ◽  
Srinivasa R Chaluvadi ◽  
Margarita Mauro-Herrera ◽  
...  

Abstract Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.

2020 ◽  
Author(s):  
Rajanikanth Govindarajulu ◽  
Ashley N. Henderson ◽  
Yuguo Xiao ◽  
Srinivasa R. Chaluvadi ◽  
Margarita Mauro-Herrera ◽  
...  

AbstractPhenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ~1920 bin markers spanning ~875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Author(s):  
Saptarathi Deb ◽  
Suvratha J ◽  
Samathmika Ravi ◽  
Raksha Rao K ◽  
Saurabh Whadgar ◽  
...  

ABSTRACTIn the age of genomics-based crop improvement, a high-quality genome of a local landrace adapted to the local environmental conditions is critically important. Grain amaranths produce highly nutritional grains with a multitude of desirable properties including C4 photosynthesis highly sought-after in other crops. For improving the agronomic traits of grain amaranth and for the transfer of desirable traits to dicot crops, a reference genome of a local landrace is necessary. Towards this end, our lab had initiated sequencing the genome of Amaranthus (A.) hypochondriacus (A.hyp_K_white) and had reported a draft genome in 2014. We selected this landrace because it is well adapted for cultivation in India during the last century and is currently a candidate for TILLING-based crop improvement. More recently, a high-quality chromosome-level assembly of A. hypochondriacus (PI558499, Plainsman) was reported. Here, we report a chromosome-level assembly of A.hyp_K_white (AhKP) using low-coverage PacBio reads, contigs from the reported draft genome of A.hyp_K_white, raw HiC data and reference genome of Plainsman. The placement of A.hyp_K_white on the phylogenetic tree of grain amaranths of known accessions clearly suggests that A.hyp_K_white is genetically distal from Plainsman and is most closely related to the accession PI619259 from Nepal (Ramdana). Furthermore, the classification of another accession, Suvarna, adapted to the local environment and selected for yield and other desirable traits, is clearly A. cruentus. A classification based on hundreds of thousands of SNPs validated taxonomy-based classification for a majority of the accessions providing the opportunity for reclassification of a few.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bahman Khahani ◽  
Elahe Tavakol ◽  
Vahid Shariati ◽  
Laura Rossini

AbstractMeta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1984
Author(s):  
Majid Nikpay ◽  
Sepehr Ravati ◽  
Robert Dent ◽  
Ruth McPherson

Here, we performed a genome-wide search for methylation sites that contribute to the risk of obesity. We integrated methylation quantitative trait locus (mQTL) data with BMI GWAS information through a SNP-based multiomics approach to identify genomic regions where mQTLs for a methylation site co-localize with obesity risk SNPs. We then tested whether the identified site contributed to BMI through Mendelian randomization. We identified multiple methylation sites causally contributing to the risk of obesity. We validated these findings through a replication stage. By integrating expression quantitative trait locus (eQTL) data, we noted that lower methylation at cg21178254 site upstream of CCNL1 contributes to obesity by increasing the expression of this gene. Higher methylation at cg02814054 increases the risk of obesity by lowering the expression of MAST3, whereas lower methylation at cg06028605 contributes to obesity by decreasing the expression of SLC5A11. Finally, we noted that rare variants within 2p23.3 impact obesity by making the cg01884057 site more susceptible to methylation, which consequently lowers the expression of POMC, ADCY3 and DNAJC27. In this study, we identify methylation sites associated with the risk of obesity and reveal the mechanism whereby a number of these sites exert their effects. This study provides a framework to perform an omics-wide association study for a phenotype and to understand the mechanism whereby a rare variant causes a disease.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Gaetano Distefano

The main challenges for tree crop improvement are linked to the sustainable development of agro-ecological habitats, improving the adaptability to limiting environmental factors and resistance to biotic stresses or promoting novel genotypes with improved agronomic traits [...]


Author(s):  
Daisuke Miki ◽  
Rui Wang ◽  
Jing Li ◽  
Dali Kong ◽  
Lei Zhang ◽  
...  

Abstract Humans are currently facing the problem of how to ensure that there is enough food to feed all of the world’s population. Ensuring that the food supply is sufficient will likely require the modification of crop genomes to improve their agronomic traits. The development of engineered sequence-specific nucleases (SSNs) paved the way for targeted gene editing in organisms, including plants. SSNs generate a double-strand break (DSB) at the target DNA site in a sequence-specific manner. These DSBs are predominantly repaired via error-prone non-homologous end joining (NHEJ), and are only rarely repaired via error-free homology-directed repair (HDR) if an appropriate donor template is provided. Gene targeting (GT), i.e., the integration or replacement of a particular sequence, can be achieved with combinations of SSNs and repair donor templates. Although its efficiency is extremely low, GT has been achieved in some higher plants. Here, we provide an overview of SSN-facilitated GT in higher plants and discuss the potential of GT as a powerful tool for generating crop plants with desirable features.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Martin Johnsson ◽  
Andrew Whalen ◽  
Roger Ros-Freixedes ◽  
Gregor Gorjanc ◽  
Ching-Yi Chen ◽  
...  

Abstract Background Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. Results Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. Conclusions Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 224-234 ◽  
Author(s):  
C E Durel ◽  
L Parisi ◽  
F Laurens ◽  
W E Van de Weg ◽  
R Liebhard ◽  
...  

Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple (Malus × domestica). The major resistance gene, Vf, has been widely used in apple breeding programs, but two new races of the fungus (races 6 and 7) are able to overcome this gene. A mapped F1 progeny derived from a cross between the cultivars Prima and Fiesta has been inoculated with two monoconidial strains of race 6. These strains originated from sporulating leaves of 'Prima' and a descendant of 'Prima' that were grown in an orchard in northern Germany. 'Prima' carries the Vf resistance gene, whereas 'Fiesta' lacks Vf. A large variation in resistance and (or) susceptibility was observed among the individuals of the progeny. Several quantitative trait loci (QTLs) for resistance were identified that mapped on four genomic regions. One of them was located in the very close vicinity of the Vf resistance gene on linkage group LG-1 of the 'Prima' genetic map. This QTL is isolate specific because it was only detected with one of the two isolates. Two out of the three other genomic regions were identified with both isolates (LG-11 and LG-17). On LG-11, a QTL effect was detected in both parents. The genetic dissection of this QTL indicated a favourable intra-locus interaction between some parental alleles.Key words: Malus × domestica, partial resistance, Venturia inaequalis, resistance breakdown, quantitative trait locus.


1998 ◽  
Vol 78 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Suzanne I. Warwick ◽  
David A. Wall

A review of biological information is provided for Erucastrum gallicum (Willd.) O.E. Schulz. A European native, it was introduced into Canada and the United States in the early 1900s and spread rapidly along the railroads. The species occurs in all the provinces and the Northwest Territories and is particularly abundant in the Prairie provinces and mid-western United States. It is a summer annual, rarely a winter annual or biennial species, and is characterized by high reproductive output. Plants occur most commonly on waste ground and along roadsides and railroads, followed by agricultural fields. Erucastrum gallicum is of allopolyploid origins (n = 15, 7 + 8 chromosomes), and contains a single multi-locus isozyme genotype. The species is a close relative of Brassica and is capable of limited genetic exchange with the canola species, B. rapa and B. napus. The possible transfer of genes from transgenic canola varieties to Erucastrum gallicum poses a remote, but potential, environmental risk. Populations of Erucastrum gallicum, including both Old World and North American populations, constitute a valuable germplasm resource as potential sources of beneficial agronomic traits, such as disease resistance for canola crop improvement. Key words: Dog mustard, Erucastrum gallicum, weed biology, risk assessment, germplasm, canola


2012 ◽  
Vol 78 (7) ◽  
pp. 2435-2442 ◽  
Author(s):  
Marie Foulongne-Oriol ◽  
Anne Rodier ◽  
Jean-Michel Savoie

ABSTRACTDry bubble, caused byLecanicillium fungicola, is one of the most detrimental diseases affecting button mushroom cultivation. In a previous study, we demonstrated that breeding for resistance to this pathogen is quite challenging due to its quantitative inheritance. A second-generation hybrid progeny derived from an intervarietal cross between a wild strain and a commercial cultivar was characterized forL. fungicolaresistance under artificial inoculation in three independent experiments. Analysis of quantitative trait loci (QTL) was used to determine the locations, numbers, and effects of genomic regions associated with dry-bubble resistance. Four traits related to resistance were analyzed. Two to four QTL were detected per trait, depending on the experiment. Two genomic regions, on linkage group X (LGX) and LGVIII, were consistently detected in the three experiments. The genomic region on LGX was detected for three of the four variables studied. The total phenotypic variance accounted for by all QTL ranged from 19.3% to 42.1% over all traits in all experiments. For most of the QTL, the favorable allele for resistance came from the wild parent, but for some QTL, the allele that contributed to a higher level of resistance was carried by the cultivar. Comparative mapping with QTL for yield-related traits revealed five colocations between resistance and yield component loci, suggesting that the resistance results from both genetic factors and fitness expression. The consequences for mushroom breeding programs are discussed.


Sign in / Sign up

Export Citation Format

Share Document