scholarly journals Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments

2020 ◽  
Vol 250 ◽  
pp. 107757 ◽  
Author(s):  
Suchismita Mondal ◽  
Somak Dutta ◽  
Leonardo Crespo-Herrera ◽  
Julio Huerta-Espino ◽  
Hans J. Braun ◽  
...  
1985 ◽  
Vol 57 (1) ◽  
pp. 1-66
Author(s):  
Reijo Karjalainen

Host-pathogen interaction between spring wheat and Septoria nodorum Berk. with applications for wheat breeding were studied. Ultrastructure of interactions was studied using electron microscopic techniques. Following inoculation, conidia of S. nodorum germinate, form appressoria anda penetration peg which directly penetrates through the cell walls. It is suggested that most penetration attempts fail because of cellular defence reactions, formation of papillae and cell wall alterations. Inoculation with low spore concentration reduced grain yield of Hankkija’s Taava cultivar by 10 % and 1000-grain weight by 14 %. Inoculation with high spore concentration on large plots of Tähti cultivar reduced grain yield by 32 % and 1000-grain weight by 18 %. Inoculation with high spore concentration on normal breeding plots of Tähti cultivar reduced grain yield by 35 % and 1000-grain weight by 21 % and the grain yield of Kadett cultivar by 27 % and 1000-grain weight by 20 %. Inheritance studies on F2 progenies of spring wheat crosses involving susceptible and moderately or highly resistant parents suggest that heredity component of symptom expression is moderate level and breeding success depends mainly on efficient screening techniques. Resistance was associated with tallness in crosses, and cultivar trials suggest that resistance is positively associated with late maturation time. Field screening techniques based on small plots and artificial inoculation showed that the most resistant entries were wild Triticum species and late and tall cultivars. Seedling plant tests based on attached seedling leaves and detached leaves revealed easily the most resistant and most susceptible cultivars. The overall correlation between seedling tests and field tests was quite high. The results are discussed in relation to wheat breeding strategies for resistance to S. nodorum.


2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Nelimor ◽  
Badu-Apraku ◽  
Tetteh ◽  
N’guetta

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing ‘climate smart’ maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.


1980 ◽  
Vol 60 (4) ◽  
pp. 1141-1146 ◽  
Author(s):  
H. G. NASS

The use of harvest index as a selection criterion for grain yield in F2 populations of spring wheat (Triticum aestivum L.) grown at two population densities was investigated. Harvest index was useful in delineating yield differences between lines for both crosses. The F4 lines selected in F2 for a high harvest index yielded about 9% more per plot in 1978 than F4 lines having a low harvest index in F2. Generally, lines selected at the higher commercial seeding rate yielded more than lines selected at the lower plant density. In 1979, a heavy Fusarium infection reduced the mean grain yield of the F6 lines and suppressed any significant response to selection resulting from population density and harvest index in F2. While selection based on high harvest index at low population density can be used to select higher yielding plants it was not as effective as selection at high population density which more closely approximates commercial crop densities. Additional research is needed before the use of harvest index as a selection tool in wheat breeding programs can be recommended for use in Atlantic Canada.


2020 ◽  
Vol 50 ◽  
Author(s):  
Carlos Eduardo da Silva Oliveira ◽  
Agner de Freitas Andrade ◽  
André Zoz ◽  
Renato Lustosa Sobrinho ◽  
Tiago Zoz

ABSTRACT One of the biggest limitations for the wheat crop expansion to Brazilian tropical regions is the high temperature in the rainy season. This study aimed to select, based on genetic divergence and path analysis, cultivars that tolerate cultivation in the summer (heat stress). Nine wheat cultivars were sown, using a randomized block design with three replications, with plots consisting of 10 rows of 6 m and row spacing of 0.15 m. The highest grain yield and number of ears m-2 were observed for the CD 150 cultivar and the largest 1,000-grain weight for CD 116. BRS 220, IPR 136, IPR 144 and BRS Pardela had the highest number of sterile spikelets. The highest number of grains per ear was observed for CD 150, CD 116, BRS Pardela, IPR 130 and IPR 85, showing direct effects on grain yield, evidenced by the path analysis. CD 116 and CD 150 were the most productive cultivars and can be considered as possible parents in wheat breeding programs. IPR 85, CD 116, CD 108 and CD 150 showed a greater tolerance to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document