Measured and calculated temperature evolution on the room side of a butted steel door frame subjected to the standard fire of ISO 834

2009 ◽  
Vol 44 (5) ◽  
pp. 808-812 ◽  
Author(s):  
E. Hugi ◽  
K. Ghazi Wakili ◽  
L. Wullschleger
Author(s):  
Chun-Xu Du ◽  
Zhong-Xian Yuan ◽  
Xiao-Huang Hou ◽  
Feng Xin ◽  
Dong-Dong Gao ◽  
...  

1966 ◽  
Vol 33 (1) ◽  
pp. 148
Author(s):  
C. Daniel Knisely ◽  
Max J. Gwertzman

Author(s):  
Ziyan Ouyang ◽  
Qi Guo ◽  
Spencer E. Quiel ◽  
Clay J. Naito

Roadway tunnels often include a reinforced concrete drop ceiling that is hung from the liner to create a plenum that facilitates ventilation and houses utilities. Drop ceiling panels are lightweight compared with the much thicker tunnel liner and can experience significant damage from a fire on the roadway below. This paper examines the flexural response of drop ceiling panels in two representative tunnels to standard fire curves as well as several realistic fires due to vehicular accidents. Standard fire demands as per the Rijkswaterstaat and ASTM E1529 fire curves are uniformly applied to the ceiling panels, and heat exposure contours for typical vehicle fires with heat release rates of 30, 100, and 200 MW are generated from the software CFAST. The finite element analysis software SAFIR is used to evaluate the thermo-mechanical behavior of the ceiling panels when subjected to various thermal demands from the fire below. The analysis results indicate that drop ceiling panels are highly vulnerable to fire-induced damage and potential collapse both during a fire’s active heating phase (from simultaneous loss of capacity and restraint of thermal expansion) and during the subsequent cooling period (from tension that develops when the permanently deformed panel thermally retracts). The potential for fire-induced damage or collapse of the drop ceiling panels can be mitigated by reducing the fire hazard, removing the drop ceiling, or enhancing the fire resistance of the panels via the application of passive protection or structural hardening.


2021 ◽  
Vol 11 (6) ◽  
pp. 2521
Author(s):  
Feng Jiang ◽  
Jianyong Liu ◽  
Wei Yuan ◽  
Jianbo Yan ◽  
Lin Wang ◽  
...  

Improving the fire resistance of the key cables connected to firefighting and safety equipment is of great importance. Based on the engineering practice of an oil storage company, this study proposes a modification scheme that entails spraying fire-retardant coatings on the outer surface of a cable tray to delay the failure times of the cables in the tray. To verify the effect, 12 specimens were processed using five kinds of fire-retardant coatings and two kinds of fire-resistant cotton to coat the cable tray. The specimens were installed in the vertical fire resistance test furnace. For the ISO 834 standard fire condition, a fire resistance test was carried out on the specimens. The data for the surface temperature and the insulation resistance of the cables in trays were collected, and the fireproof effect was analyzed. The results showed that compared with the control group, the failure time of the cable could be delayed by 1.57–14.86 times, and the thicker the fire-retardant coatings were, the better the fireproof effect was. In general, the fire protection effect of the fire-retardant coating was better than that of the fire-resistant cotton.


2016 ◽  
Vol 861 ◽  
pp. 88-95
Author(s):  
Balázs Nagy ◽  
Elek Tóth

In this research, conjugated thermal and fluid dynamics simulations are presented on a modern hollow clay slab blocks filled pre-stressed reinforced concrete beam slab construction. The simulation parameters were set from Eurocode standards and calibrated using data from standardized fire tests of the same slab construction. We evaluated the temperature distributions of the slabs under transient conditions against standard fire load. Knowing the temperature distribution against time at certain points of the structure, the loss of load bearing capacity of the structure is definable at elevated temperatures. The results demonstrated that we could pre-establish the thermal behavior of complex composite structures exposed to fire using thermal and CFD simulation tools. Our results and method of fire resistance tests can contribute to fire safety planning of buildings.


Sign in / Sign up

Export Citation Format

Share Document